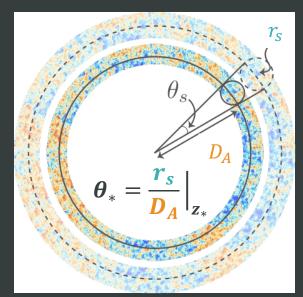

Theoretical approaches to cosmic tensions

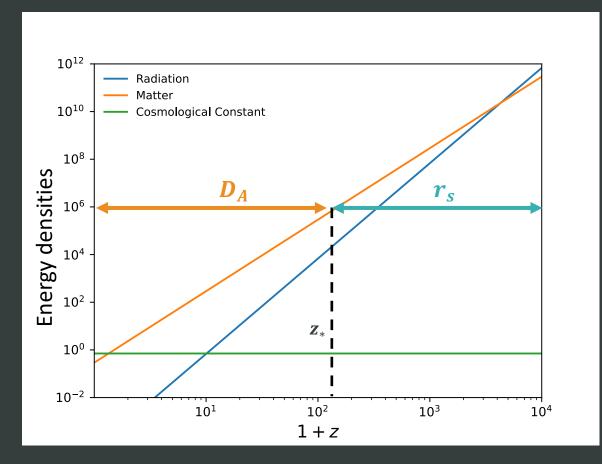
Tanvi Karwal

CosmoVerse@Kraków 11th July, 2024

Cosmic tensions, solutions and extensions


- Guidelines for a theoretical solution to H_0
- The Early Dark Energy solution(s)
- Challenges to EDE solutions
- Going beyond EDE

Cosmic tensions, solutions and extensions


- Guidelines for a theoretical solution to H_0
- The Early Dark Energy solution(s)
- Challenges to EDE solutions
- Going beyond EDE

Theoretical guidelines A model-dependent H_0

Precisely measured θ_* is an approximate proxy for CMB peak locations

Cartoon by Tristan L. Smith

$$D_A \propto 1/H_{post}$$
$$r_S \propto 1/H_{pre}$$

Both are fixed by Λ CDM

For precisely measured $heta_*$

$$\theta_* \sim \frac{r_s}{1/H_{post}} \sim r_s H_0$$

$$r_S \propto 1/H_0$$

In support of an early universe modification:

Karwal et al [1608.01309]

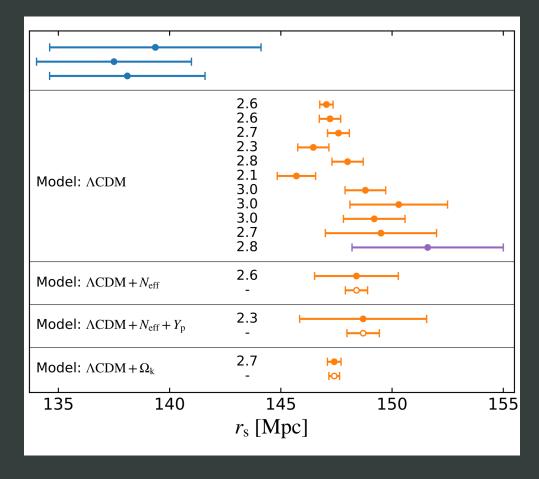
Planck [1807.0620

Bernal et al [1607.05617]

Bernai et ai [1607.05617

Evslin et al [1711.01051]

Rayeri et al [2002 1170


. .

Theoretical guidelines Hubble Tension ←→ Sound Horizon Tension

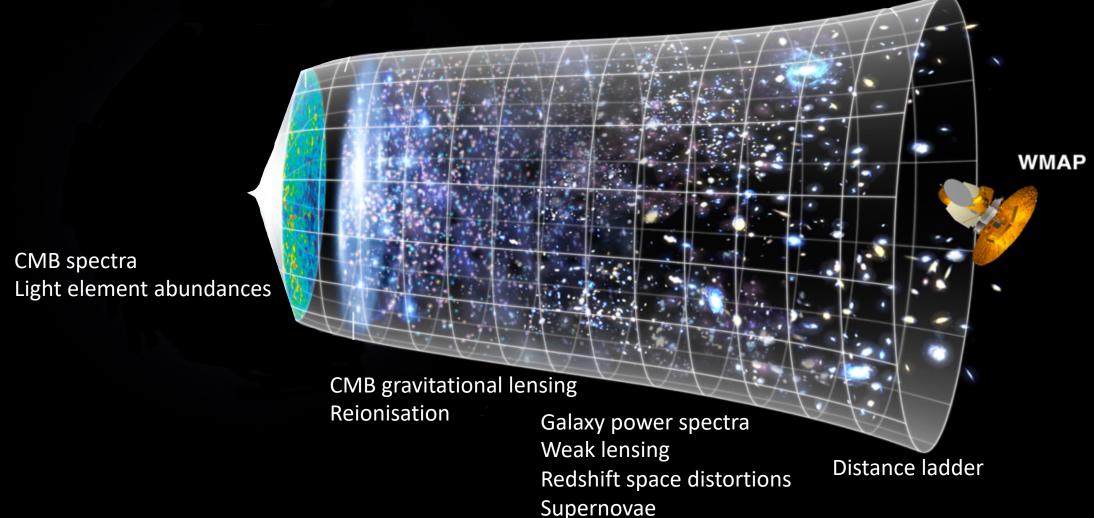
Distance ladder and other late universe

CMB, early universe

No CMB data, early universe

Higher H_0 measured

Lower H_0 inferred


Lower H_0 inferred

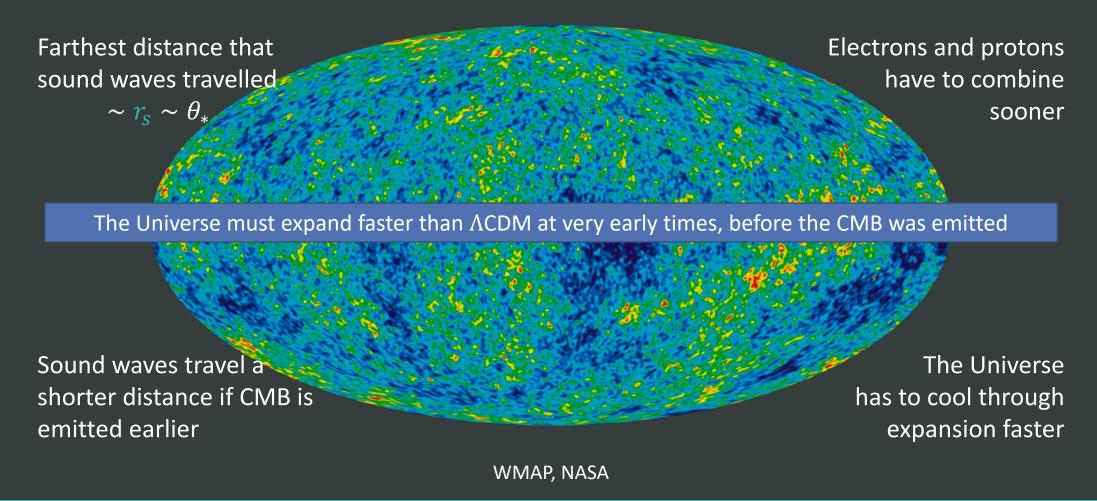
Aylor et al [1811.00537]

Theoretical guidelines

• Maintaining a good fit to the CMB requires $r_S \propto 1/H_0$. Decrease the sound horizon r_S to increase the predicted H_0 . Because $r_S \propto 1/H_{pre}(z)$, new physics must be added before the CMB

Theoretical guidelines Leave late universe unchanged

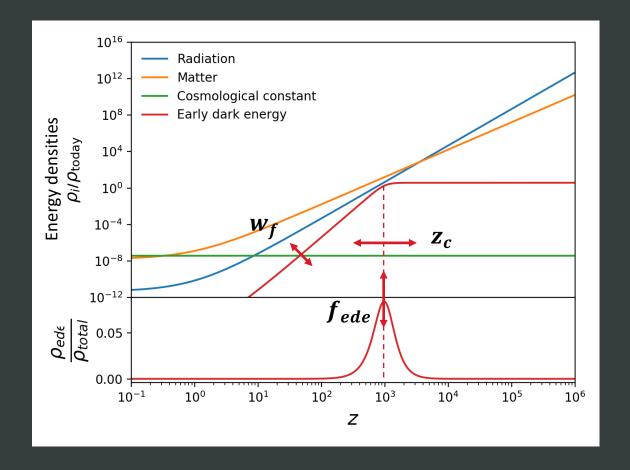
Theoretical guidelines


- Maintaining a good fit to the CMB requires $r_S \propto 1/H_0$. Decrease the sound horizon r_S to increase the predicted H_0 . Because $r_S \propto 1/H_{pre}(z)$, new physics must be added before the CMB
- New physics must vanish post recombination
 - Modifications to D_A introduce new tensions between CMB and BAO
 - DESI and SNe may prefer w(z)CDM but these do not increase H_0
 - Very-late H(z) modifications do not resolve the tension at $z \simeq 0.15$

Cosmic tensions, solutions and extensions

- Guidelines for a theoretical solution to H_0
- The Early Dark Energy solution(s)
- Challenges to EDE solutions
- Going beyond EDE

Early dark energy Effect on cosmic microwave background


Early dark energy Phenomenology

 $H^2 \sim \rho_{total}$ Expansion rate \sim energy content

Additional energy component with the properties:

- Λ-like behaviour initially
- Then dilutes faster than matter at w_f
- Localised peak in $f_{ede} = \frac{\rho_{ede}}{\rho_{total}}$ at z_c

 f_{ede} - how much EDE z_c - when EDE appears w_f - how fast is disappears

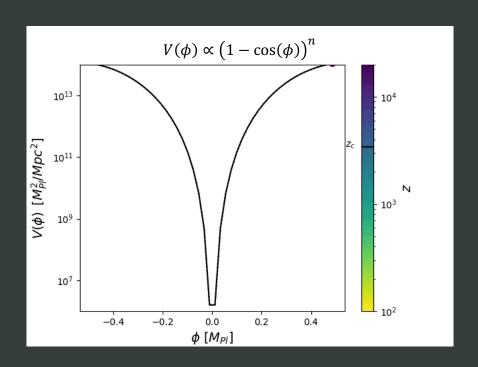
Theoretical guidelines

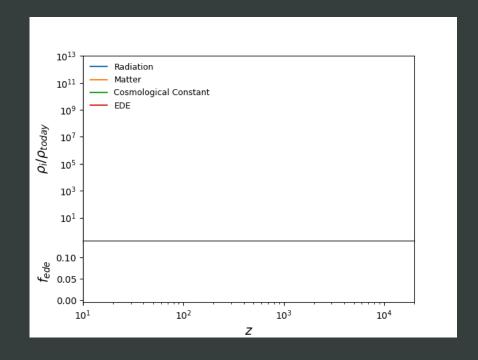
- ✓ Decrease the sound horizon r_s to increase the predicted H_0 . Because $r_s \propto 1/H_{pre}(z)$, new physics must be added before the CMB
- ✓ New physics must vanish post recombination

Early dark energy Models

- Early Dark Energy, the Hubble Parameter, and the String Axiverse TK & Kamionkowski [1608.01309]
- Cosmological Implications of Ultralight Axionlike Fields Poulin, TK et al [1806.10608]
- Early Dark Energy Can Resolve The Hubble Tension Poulin, TK et al [1811.04083]
- Thermal Friction as a Solution to the Hubble Tension Berghaus & TK [1911.06281]
- Chameleon Early Dark Energy and the Hubble Tension TK, Raveri, Jain, Khoury, Trodden [2106.13290]
- Thermal Friction as a Solution to the Hubble and Large-Scale Structure Tensions Berghaus & TK [2204. 09133]
- An Attractive Proposal for Resolving the Hubble Tension: Dynamical Attractors that Unify Early and Late Dark Energy Ramadan, TK & Sakstein [2309.08082]

Non-comprehensive list:


- Rock 'n' Roll Solutions to the Hubble Tension. Agrawal et al [1904.01016]
- Axion-Dilaton Destabilization and the Hubble Tension. Alexander & McDonough [1904.08912]
- Acoustic Dark Energy: Potential Conversion of the Hubble Tension. Lin, Raveri, Hu [1905.12618]
- Oscillating scalar fields and the Hubble tension: a resolution with novel signatures. Smith, Poulin, Amin [1908.06995]
- New Early Dark Energy. Neidermann & Sloth [1910.10739]
- Early Dark Energy from Massive Neutrinos as a Natural Resolution of the Hubble Tension.

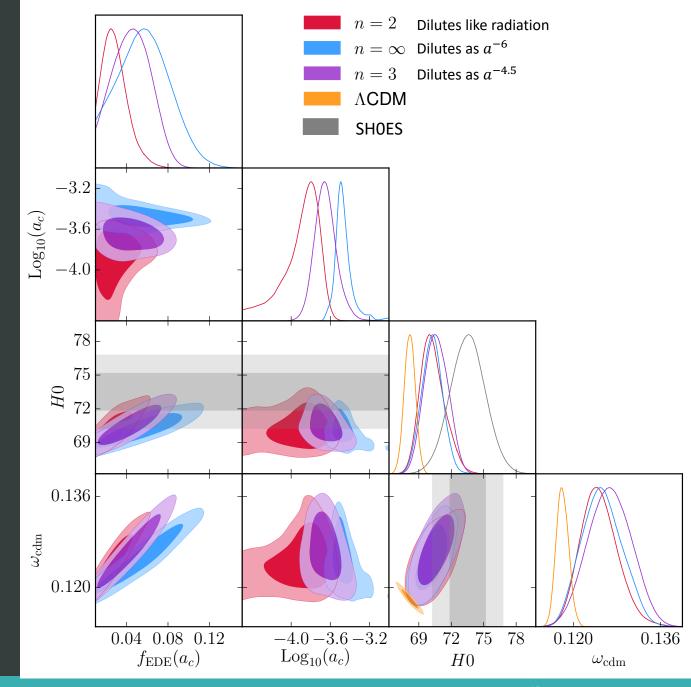

 Sakstein & Trodden [1911.11760]
- Unifying Inflation with Early and Late-time Dark Energy in F(R) Gravity. Nojiri et al [1912.13128]
- Is the Hubble tension a hint of AdS phase around recombination? Ye & Piao [2001.02451]
- Unified framework for early dark energy from α -attractors. Braglia et al [2005.14053]
- A novel early Dark Energy model. Garcia, Castaneda, Tejeiro [2009.07357]
- Neutrino-Assisted Early Dark Energy: Theory and Cosmology. Gonzalez et al [2011.09895]
- The Early Dark Sector, the Hubble Tension, and the Swampland. McDonough, .. Hill, Hu, et al [2112.09128]
- Effects of a Geometrically Realized Early Dark Energy Era on the Spectrum of Primordial Gravitational Waves, Oikonomou et al [2206.00721]
- Early dark energy and the screening mechanism, Sadjadi et al [2205.15693]
- Early Dark Energy from a Higher-dimensional Gauge Theory, Kojima et al [2205.13777]
- Unifying inflation with early and late dark energy with multiple fields: Spontaneously broken scale invariant two measures theory, Guendelman et al [2201.06470]

EDE@Krakow

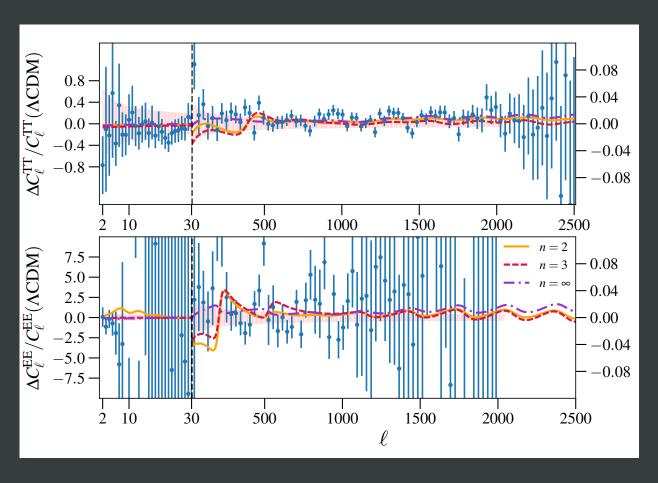
William Giarè - Inflation and the Hubble Tension talk Joby Kochappan – EDE birefringence poster

Early dark energy Ultra-light-axion-inspired scalar potential

Based on Poulin,.. TK, et al [arxiv:1806.10608]


Early dark energy ULA-inspired scalar

Fit to CMB+BAO+SNe+HO


- $\omega_{cdm} =$ amount of cold dark matter today
- $f_{ede}(a_c)$ = fractional energy density in the axion field at critical redshift $z_c \approx 1/a_c$
- $w_f = \frac{n-1}{n+1}$

We find an improved χ^2 for Λ CDM + EDE for combined datasets

Poulin,.. TK et al [1811.04083]

Early dark energy Detection in the CMB

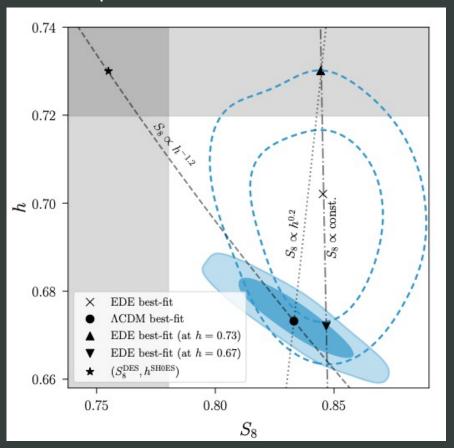
Could detect EDE in cosmic-variance-limited, high-ell CMB polarisation data

ACT and SPT have already had implications for EDE constraints

Smith et al [2309.03265] Smith et al [2202.09379] La Posta et al [2112.10754] Hill et al [2109.04451] Lin et al [2009.08974] Chudaykin et al [2004.13046] and [2011.04682]

Poulin,.. TK et al [1811.04083]

Cosmic tensions, solutions and extensions


- Guidelines for a theoretical solution to H_0
- The Early Dark Energy solution(s)
- Challenges to EDE solutions
- Going beyond EDE

Challenges to EDE Weak-lensing S_8 tension

DES Y3 Amplitude σ_8 of matter density fluctuations DES Y3 vs. CMB: 2.4σ HSC Y1 (ξ_{\pm}) HSC Y1 (ξ_{\pm}) vs. CMB: 0.0σ HSC Y1 (C_{ℓ}) HSC Y1 (C_{ℓ}) vs. CMB: 1.5σ KiDS-1000 KiDS-1000 vs. CMB: 3.0σ Planck 2018 0.9 $\sigma_8 \sqrt{\Omega_m/0.3}$ S_{∞} 0.8 0.7 0.1 0.2 0.3 0.4 0.5 Ω_m

Impact of EDE on WL tension

Secco, TK et al [2209.12997]

Challenges to EDE Solutions and obstacles

- Resolves the Hubble tension
- Can arise from numerous theoretical scenarios
- Scalar field $V(\phi) \sim (1 \cos \phi)^n$ does particularly well
- Improves the fit to cosmological data relative to ΛCDM

- Worsens the WL tension
- Solution is fine-tuned in theoretical parameters – why matter-radiation equality?
- $V(\phi) \sim (1 \cos \phi)^n$ is a very contrived potential
- Need to include local H_0 while fitting via Bayesian methods

Cosmic tensions, solutions and extensions

- Guidelines for a theoretical solution to H_0
- The Early Dark Energy solution(s)
- Challenges to EDE solutions
- Going beyond EDE

Challenges to EDE Solutions and obstacles

- Resolves the Hubble tension
- Can arise from numerous theoretical scenarios
- Scalar field $V(\phi) \sim (1 \cos \phi)^n$ does particularly well
- Improves the fit to cosmological data relative to ΛCDM

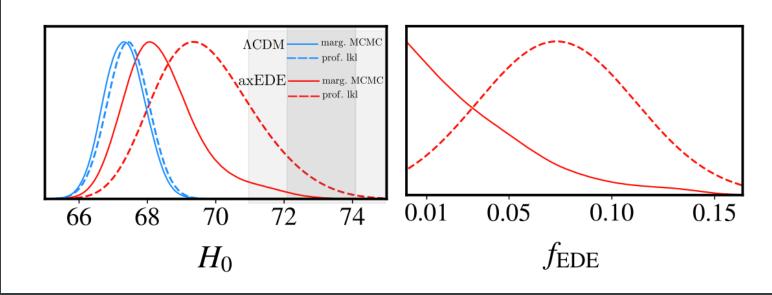
- Worsens the WL tension
- Solution is fine-tuned in theoretical parameters – why matter-radiation equality?
- $V(\phi) \sim (1 \cos \phi)^n$ is a very contrived potential
- Need to include local H_0 while fitting via Bayesian methods

Beyond EDE EDE without SH_0 ES priors

Alternate statistical frameworks

Bayesian inference

$$\mathcal{P}(\theta|d) = \frac{\Pi(\theta)\mathcal{L}(d|\theta)}{\mathcal{E}(d)}$$


Profile likelihoods

No dependence on prior

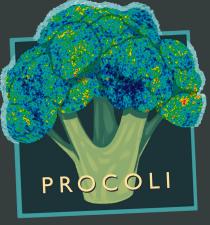
$$\mathbb{P}(\theta_i) = \max \mathcal{L}(\boldsymbol{\theta}|\theta_i = \theta_i') \ \forall \ \theta_i'$$

Prior volume increases as $f_{ede} \rightarrow 0$ z_c and w_f become unconstrained

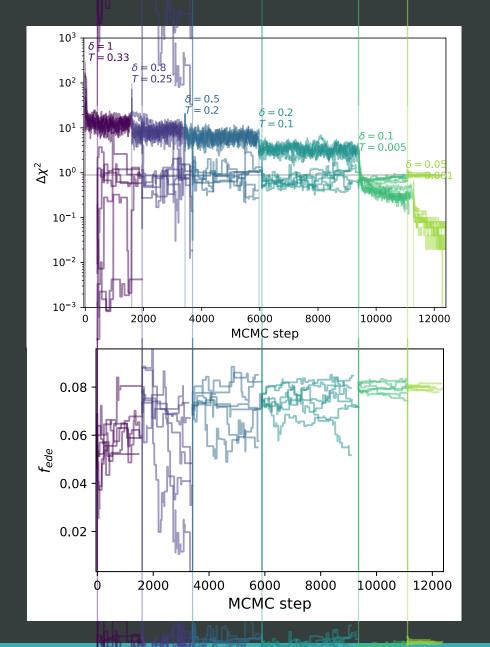
Fit to CMB+BAO+SNe, no H_0 prior

Poulin, Smith and TK [2302.09032]

Beyond EDE Profile likelihoods

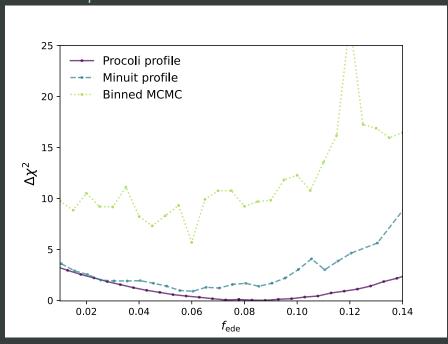

Profile likelihoods

No dependence on prior

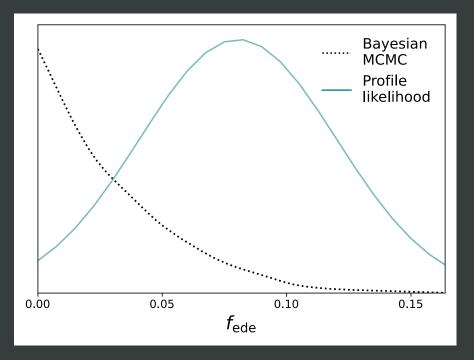

$$\mathbb{P}(\theta_i) = \max \mathcal{L}(\boldsymbol{\theta}|\theta_i = \theta_i') \ \forall \ \theta_i'$$

With simulated-annealing optimization for

high-dimensional parameter spaces



TK et al [2401.14225]



Beyond EDE Profile likelihoods

Profile likelihood with simulated annealing
Profile likelihood without stochastic algorithm
Posterior profile

Additional insight into model that may be hidden by prior-dependent posteriors

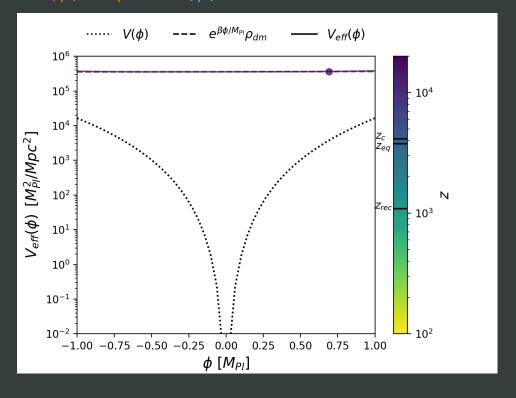
TK et al [2401.14225]

Challenges to EDE Solutions and obstacles

- Resolves the Hubble tension
- Can arise from numerous theoretical scenarios
- Scalar field $V(\phi) \sim (1 \cos \phi)^n$ does particularly well
- Improves the fit to cosmological data relative to ΛCDM

- Worsens the WL tension
- Solution is fine-tuned in theoretical parameters – why matter-radiation equality?
- $V(\phi) \sim (1 \cos \phi)^n$ is a very contrived potential
- Need to include local H_0 while fitting via Bayesian methods

Beyond EDE Chameleon EDE coupled to dark matter

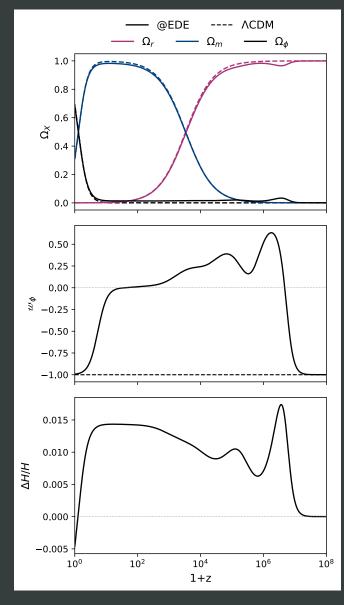

Conformally couple a scalar field to dark matter

$$\rho_{total} += \rho_{dm} A(\phi)$$

$$V_{eff}(\phi) = V(\phi) + \rho_{dm}A(\phi)$$

- Modifies DM evolution $\rightarrow S_8$?
- Tie the redshift of EDE to z_{eq} through coupling $A(\phi)$

$$V(\phi) \sim \phi^4 \quad A(\phi) \sim e^{\beta \phi}$$


TK et al [2106.13290]

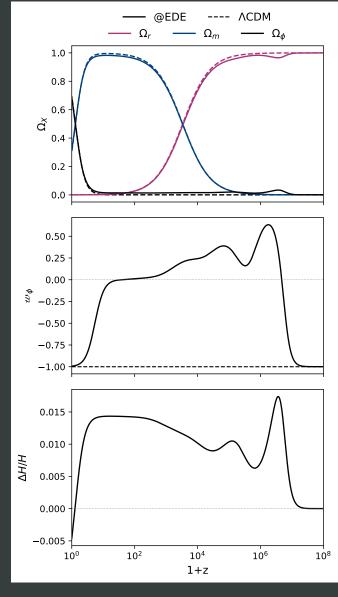
Beyond EDE Attractive EDE coupled to dark energy

$$V(\phi) = V_{\alpha}e^{-\alpha\frac{\phi}{M_{Pl}}} + V_{\beta}e^{-\beta\frac{\phi}{M_{Pl}}}$$

For $\alpha > \beta$, early and late dark energy attractors

- EDE saddle point in the radiation era
- Transition to a matter saddle in the matter era
- Settle into dark energy attractor

Ramadan, TK et al [2309.08082]

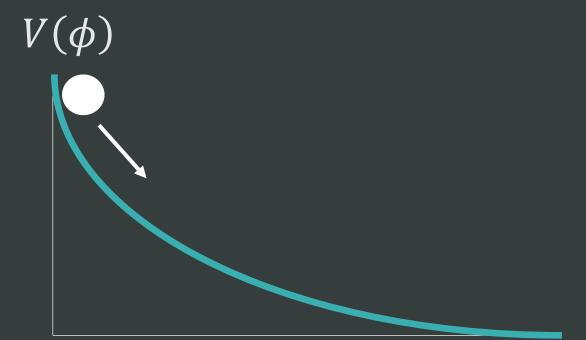

Beyond EDE Attractive EDE coupled to dark energy

$$V(\phi) = V_{\alpha}e^{-\alpha\frac{\phi}{M_{Pl}}} + V_{\beta}e^{-\beta\frac{\phi}{M_{Pl}}}$$

Too much contribution from @EDE during the matter era strongly constrains this model, preventing a Hubble solution

- @EDE presence at early times increases the early ISW effect, requiring an increase in ω_c
- @EDE contribution post-recombination decreases D_A requiring a decreases in ω_c

Model-building guidance - minimise the contribution of @EDE during matter-domination

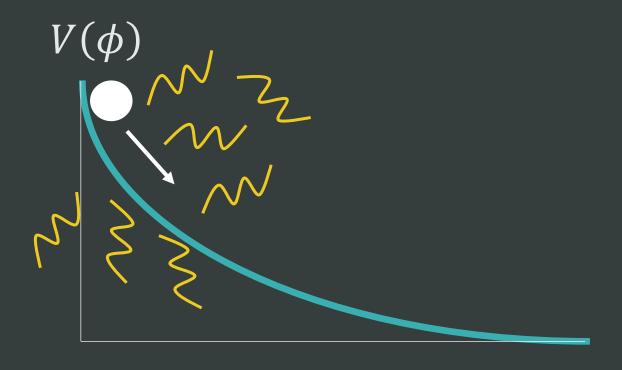

Ramadan, TK et al [2309.08082]

Beyond EDE Dissipative axion EDE coupled to dark radiation

Uncoupled scalar experiences Hubble friction. Uncoupled DR dilutes as $(1 + z)^4$

$$\ddot{\phi} + (3H)\,\dot{\phi} + V_{\phi} = 0$$

$$\dot{\rho}_{dr} = -4H\rho_{dr}$$


Berghaus & Karwal [1911.06281]

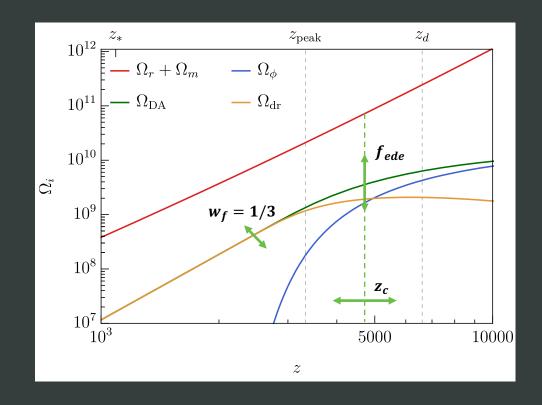
Beyond EDE Dissipative axion EDE coupled to dark radiation

Scalar coupled to DR additionally experiences thermal friction

$$\ddot{\phi} + (3H + \Upsilon) \dot{\phi} + V_{\phi} = 0$$

$$\dot{\rho}_{dr} = -4H\rho_{dr} + \mathbf{Y}\dot{\phi}^2$$

Berghaus & Karwal [1911.06281]


Beyond EDE Dissipative axion EDE coupled to dark radiation

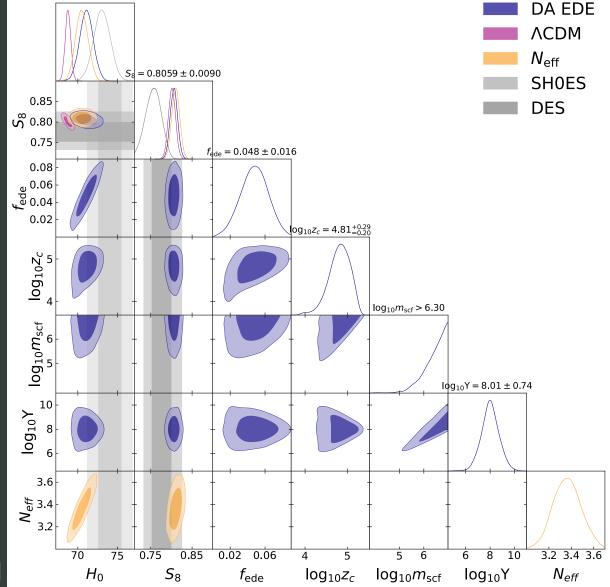
$$\ddot{\phi} + (3H + \Upsilon(T_{dr}))\dot{\phi} + V_{\phi} = 0$$

$$\dot{\rho}_{dr} = -4H\rho_{dr} + \Upsilon(T_{dr})\dot{\phi}^2$$

$$m, \phi_i \rightarrow f_{ede}$$

 $m, \Upsilon(T_{dr}) \rightarrow Z_c$
 $w_f = 1/3$

Robust to choice of $V(\phi)$


Berghaus & Karwal [1911.06281]

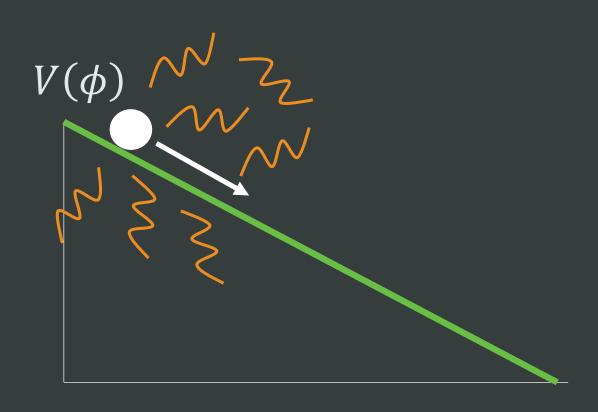
Beyond EDE DA EDE coupled to DR

Fit to CMB+BAO+SNe+H0+DES

- Higher Hubble than Λ CDM and N_{eff}
- Similar S_8 to Λ CDM and N_{eff}
- Extra radiation preferred over EDE-like injection
- Similar fit to CMB as ΛCDM, but worse than ΛCDM fit to concordant data

Dissipative axion performs better than N_{eff} but suffers the same CMB constraints as other extra radiation

 $H_0 = 71.08 \pm 0.85$


Berghaus & Karwal [2204.09133]

Beyond EDE Dissipative axion as late dark energy

Scalar coupled to DR additionally experiences thermal friction

$$\ddot{\phi} + (3H + \Upsilon) \dot{\phi} + V_{\phi} = 0$$

$$\dot{\rho}_{dr} = -4H\rho_{dr} + \mathbf{Y}\dot{\phi}^2$$

Berghaus, Karwal et al [2311.08638]

Beyond EDE Dark energy radiation

Current data:

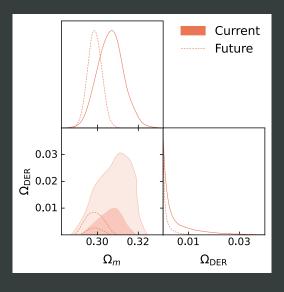
Planck CMB + BAO + Pantheon SNe

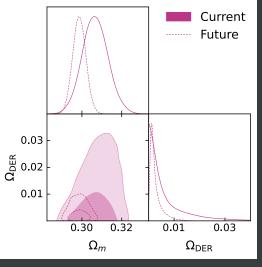
$$V(\phi) = C\phi$$

 $\Omega_{DER} \simeq 0.03$ at 2σ $100 \times \Lambda \text{CDM}$ radiation $\Omega_{\gamma} \sim 10^{-4}$ $5000 \times \Delta N_{eff}$ radiation $\Omega_{N_{eff}} \sim 10^{-5}$

Future data:

SO CMB + BAO + Roman SNe


 $\Omega_{DER} \simeq 1\%$ at 2σ

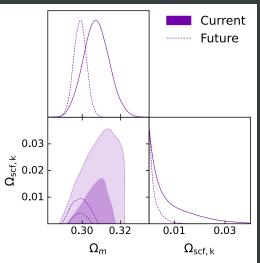

Recent DESI data:

CMB + DESI + Pan+

 $\Omega_{DER} \simeq 0.03$ at 1σ with

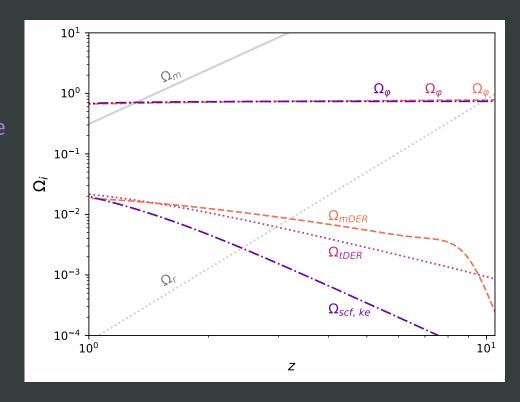
Berghaus et al [2404.14341]

Minimal DER


 $\Upsilon \propto \rho_{DFR}^{3/4}$

Toy DER

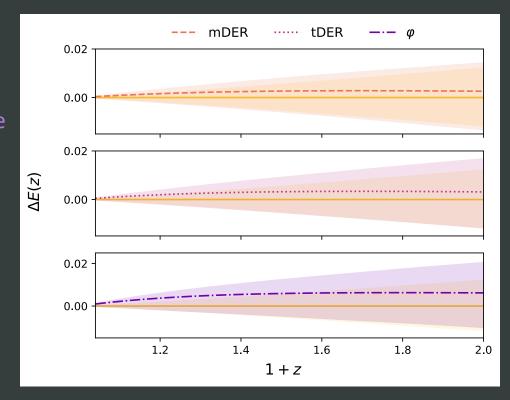
 $\Upsilon = constant$


Quintessence

 $\Upsilon = 0$

Beyond EDE Dark energy radiation

ΛCDM
Minimal DER
Toy DER
Quintessence


DER produced dynamically in the late universe evades early-universe DR bounds where $\Omega_{DER} \simeq 0$

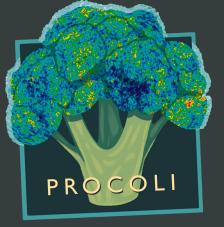
Constraints are dominated by the impact of DER on the background expansion $H(z) = H_0 E(z)$

Berghaus, Karwal et al [2311.08638]

Beyond EDE Dark energy radiation

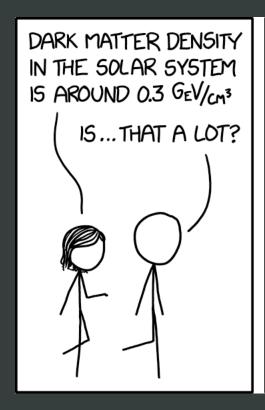
ΛCDM
Minimal DER
Toy DER
Quintessence

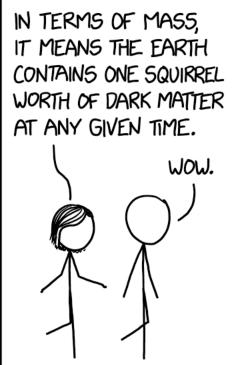
Neither current or future CMB and SNe data will able to distinguish these models in H(z)

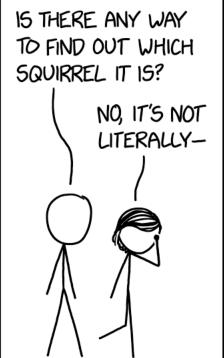

$$E(z) = \frac{H(z)}{H_0}$$

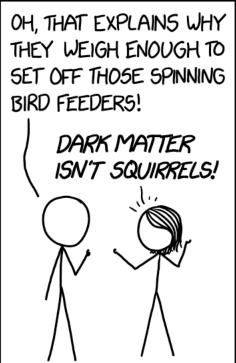
or

Berghaus, Karwal et al [2311.08638]


Cosmic tensions, solutions and extensions


- Are the tensions real (CMB lensing sees no S_8 tension)? Do they point to new, undiscovered physics?
- Hubble tension requires a modification to the background universe, at early times
- Early dark energy can resolve the Hubble tension
 - Several fundamental models can form EDE, with details of the model dictating resolution of tension and fit to data
 - Current and future CMB data can detect and to some extent distinguish models




- Challenges to EDE include the WL tension, a new coincidence problem, improving the fundamental model, prior volume
 effects
 - Model-building insight, using EDE avatars as a stepping stone eg. interactions with dark matter, late dark energy or dark radiation
 - Profile likelihoods provide more insight into these models.
- Models are applicable to other eras of accelerated expansion dark energy (DER) and inflation (See warm inflation papers by Berghaus)
 - Dark radiation dynamically produced in the late universe evades cosmic bounds on ever-present DR. Can be as large as $\Omega_{DER} \simeq 0.03 = 100 \times \Omega_{rad}^{\Lambda CDM}$, with a temperature much higher than that of the CMB
- Inelegance: two independent solutions required for H_0 and WL?
 - H_0 depends on background expansion
 - WL S_8 depends on perturbation evolution

Lets get creative with dark sector physics!

XKCD: 2186