Hubble Tension Tomography

Leandros Perivolaropoulos

Department of Physics, University of Ioannina, Greece

CosmoVerse@Krakow (9 July - 11 July 2024)

History of Major Shifts of Cosmological Models

- Geocentric (Ptolemy) to Heliocentric (Copernicus, 16th-17th c.):
 - Retrograde motion (Copernicus)
 - Phases of Venus, Moons of Jupiter (Galileo, 1610)

Heliocentric to Infinite Universe (18th-19th c.):

- Improved telescopes, Uranus discovery (Herschel, 1781)
- Stellar parallax (Bessel, 1838)

Infinite to Static Universe (Einstein, early 20th c.):

- Nebulae spectroscopy (Slipher)
- Stellar distances (Leavitt, Hertzsprung)

Static to Expanding Universe (Lemaître, Hubble, 1920s-30s):

- Galactic redshift (Slipher, 1912-14)
- Hubble's law (Hubble, 1929)

Expanding Universe to Inflationary Big Bang (1960s-80s):

- CMB (Penzias & Wilson, 1964)
- Light element abundance (Alpher, Herman)
- Inflation theory (Guth, Linde, 1980s)

- Introduction of Dark Matter (1970s-80s):
 - Galaxy rotation curves (Rubin, 1970s)
 - Gravitational lensing (Walsh et al., 1979)
 - Galaxy clusters (Zwicky, 1930s)
- Lambda-CDM (late 1990s-present):
 - Supernova observations (Perlmutter, Schmidt, Riess, 1998-99)
 - CMB (WMAP, Planck), BAO (SDSS, 2005)

Potential Future Shift (2020s-?):

- Hubble tension (Riess et al. vs Planck Collaboration)
- S8 (growth rate) tension (KiDS, DES, Planck collaborations)
- Cosmic dipoles tension (Various teams)
- CMB anomalies (Planck Collaboration)
- ISW (Integrated Sachs-Wolfe) tension
- Lithium problem (Primordial Nucleosynthesis)

New Astronomy Reviews Volume 95, December 2022, 101659

Challenges for Λ CDM: An update

L. Perivolaropoulos 📯 🖾, F. Skara 🖾

Hubble and Growth Tensions

Local measurements

One step distance methods in Hubble flow (z>0.01, local calibrator and sound horizon free)

Method	H ₀ (km/sec Mpc)	Arxiv-link	First author
Cosmic Chronometers	66.7±5.3	https://arxiv.org/pdf/2307.09501.pdf	Moresco
Cosmic Chronometers + HII gal.	65.9±3.0	https://arxiv.org/pdf/2208.03960.pdf	Jianchen Zhang et
Gravitational Waves + Kilonovae	69.6±5.5	https://arxiv.org/pdf/2205.09145.pdf	Bulla etal
Gravitational Waves + Kilonovae	67.0 ± 3.6	https://arxiv.org/pdf/2306.12468.pdf	Sneppen etal
Lensing TD TDCOSMO	74.2±1.6	https://arxiv.org/pdf/1912.08027.pdf	Millon etal
Lensing TD TDCOSMO + SLACS	67.4±4	https://arxiv.org/pdf/2007.02941.pdf	Birrer etal
Lensing TD HFF	65.1 ±3.5	https://arxiv.org/pdf/2401.10980	Grillo etal
Lensing TD SN Refdfal	66.6 ±3.8	https://arxiv.org/pdf/2305.06367	Kelly etal
Megamasers (MCP)	66.0 ± 6.0	https://arxiv.org/pdf/1511.08311.pdf	Gao etal
Megamasers (MCP+SH0ES)	73.9±3.0	https://arxiv.org/pdf/2001.09213.pdf	Pesce etal
SZ effect	61±21	https://arxiv.org/pdf/astro-ph/0306073.pdf	Reese
Gamma ray attenuation	61.9±2.6	https://arxiv.org/pdf/2306.09878.pdf	Domínguez etal
T _{eg} standard ruler	64.8±2.4	https://arxiv.org/pdf/2204.02984.pdf	Philcox etal
$BAO + \Omega_{\rm h}/\Omega_{\rm m}$ (no Sound Horizon)	67.1±5.5	https://arxiv.org/pdf/2403.19227	Krokewski et al
BAO-DESI (no Sound Horizon)	69.88±0.93	https://arxiv.org/pdf/2405.20306	Pogosian et al

Local measurements

Distance ladder methods (local calibrators dependent)

Method	<u> H₀(km/sec Mpc) </u>	Arxiv-link	First author
Tully Fisher + Cepheid + TRGB	76.0 ± 3.4	https://arxiv.org/pdf/2004.14499.pdf	Kourkchi etal
SBF + Cepheids + TRGB	73.3 ± 3.1	https://arxiv.org/pdf/2101.02221.pdf	Blakeslee etal
Snll + Cepheids + TRGB	75.57±15	https://arxiv.org/pdf/2305.17243.pdf	Jaeger etal
Mira calibrators	73.3 ± 4.0	https://arxiv.org/pdf/1908.10883.pdf	Huang etal
Mira calibrators	72.37 ± 2.97	https://arxiv.org/pdf/2312.08423	Huang etal
TRGB calibrators (SH0ES)	73.22 ± 2.06	https://arxiv.org/pdf/2304.06693.pdf	Scolnic etal
Cepheid (SH0ES)	73.04 ± 1.04	https://arxiv.org/pdf/2112.04510.pdf	Riess etal
TRGB calibrators	76.94 ± 6.4	https://arxiv.org/pdf/2203.04241	Dhawan etal
TRGB calibrators	69.8 ± 0.6	https://arxiv.org/pdf/2106.15656	Freedman

Could we be missing something with ALL local calibrators?? Could there be a physics change between local calibrator scales (z<0.01) and Hubble flow scales (z>0.01)?

The Hubble Crisis Approaches

Distance Ladder H(z) (M calibrator - Cepheids at z<0.01)

Planck 2018 results. VI. Cosmological parameters

Planck Collaboration • N. Aghanim (Orsay, IAS) Show All(181)

The Hubble Crisis Approaches

George Alestas (Ioannina U.), Leandros Perivolaropoulos (Ioannina U.) (Mar 6, 2021)

Published in: Mon.Not.Roy.Astron.Soc. 504 (2021) 3, 3956-3962 • e-Print: 2103.04045 [astro-ph.CO]

Published in: Phys.Rev.D 101 (2020) 12, 123516 • e-Print: 2004.08363 [astro-ph.CO]

AsCDM a prime H(z) deformation model

Planck

 $\Lambda_{s}CDM$

ACDM

unconstrained

 $70.77^{+0.79}_{-2.70}(71.22)$

 $67.39 \pm 0.55(67.28)$

 $0.2860^{+0.0230}_{-0.0099}(0.2796)$

 $0.801^{+0.026}_{-0.016}(0.791)$

 $0.832 \pm 0.013(0.835)$

2778.06

2780.52

-1.28

 $0.3151 \pm 0.0075(0.3163) \ 0.2958 \pm 0.0061(0.2984)$

Data set

Model

 $M_B[mag]$

 $H_0[\rm km/s/Mpc]$

 z_{\dagger}

 $\Omega_{
m m}$

 S_8

 $\chi^2_{
m min}$

 $\ln \mathcal{B}_{i,i}$

Planck+BAOtr

 $\Lambda_{s}CDM$

ACDM

 $1.70^{+0.09}_{-0.19}(1.65)$

 $73.30^{+1.20}_{-1.00}(73.59)$

 $68.84 \pm 0.48(68.61)$

 $0.2643^{+0.0072}_{-0.0090}(0.2618)$

 $0.777 \pm 0.011(0.772)$

 $0.802 \pm 0.011(0.804)$

2793.38

2820.30

-12.65

Planck+BAOtr

+PP

 $\Lambda_{s}CDM$

ACDM

 $1.87^{+0.13}_{-0.21}(1.75)$

 $71.72^{+0.73}_{-0.92}(71.97)$

 $68.55 \pm 0.44(68.54)$

 $0.2768^{+0.0072}_{-0.0063}(0.2759)$

 $0.2995 \pm 0.0056(0.2992)$

 $0.791 \pm 0.011(0.794)$

 $0.808 \pm 0.010(0.804)$

4219.68

4235.18

-752

Growth, JWST tension improved Akarsu, Cam, Paraskevas, LP in preparation.

Planck+BAOtr

 $\Lambda_{s}CDM$

ACDM

 $1.72^{+0.09}_{-0.10}(1.70)$

Planck+BAOtr

+PP&SH0ES

 $\Lambda_{s}CDM$

 ΛCDM

 $1.70^{+0.10}_{-0.12}(1.67)$

 $72.82 \pm 0.65(73.20)$

 $69.57 \pm 0.42(69.73)$

 $0.2683 \pm 0.0052(0.2646)$

 $0.2869 \pm 0.0051(0.2849)$

 $0.783 \pm 0.010(0.777)$

 $0.788 \pm 0.010(0.784)$

4097.32

4138.26

-1947

 $-19.317^{+0.021}_{-0.025}(-19.311) -19.290 \pm 0.017(-19.278)$

 $-19.407 \pm 0.013(-19.411) - 19.379 \pm 0.012(-19.373)$

 $M_{\rm P}^{R21}$

$\Lambda_{\rm s}$ CDM model: A promising scenario for alleviation of cosmological tensions

Ozgur Akarsu, Eleonora Di Valentino, Suresh Kumar, Rafael C. Nunes, J. Alberto Vazguez et al. (Jul 20, 2023) e-Print: 2307.10899 [astro-ph.CO]

Graduated dark energy: Observational hints of a spontaneous sign switch in the cosmological constant

Özgür Akarsu (Istanbul, Tech. U.), John D. Barrow (Cambridge U., DAMTP), Luis A. Escamilla (UNAM, CCF), J. Alberto Vazquez (UNAM, CCF) (Dec 18, 2019)

Published in: Phys.Rev.D 101 (2020) 6, 063528 • e-Print: 1912.08751 [astro-ph.CO]

Hubble Tension Tomography: The problem with H(z) deformation models

Opinion Seven Hints that Early-Time New Physics Alone Is Not Sufficient to Solve the Hubble Tension

Sunny Vagnozzi ^{1,2}0

 $k_{\rm eq}$

 10^{4}

10

- Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo, TN, Italy; sunny.vagnozzi@unitn.it
- ² Istituto Nazionale di Fisica Nucleare (INFN)—Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Povo, TN, Italy
- \mathcal{A}_{ges} of the oldest astrophysical objects
- \mathcal{B} aryon Acoustic Oscillations r_d - H_0 degeneracy slope
- Cosmic chronometers
- Descending trends observed in a wide range of low-z datasets
- \mathcal{E} arly integrated Sachs-Wolfe effect and its restrictions on early-time new physics
- \mathcal{F} ractional matter density (Ω_m) constraints from uncalibrated cosmic standards
- \mathcal{G} alaxy power spectrum r_d and k_{eq} -based determinations of H_0

The Ups and Downs of Early Dark Energy solutions to the Hubble tension: A review of models, hints and constraints circa 2023

Vivian Poulin (U. Montpellier 2, LUPM), Tristan L. Smith (Swarthmore Coll. and New York U., CCPP), Tanvi Karwal (Pennsylvania U.) (Feb 17, 2023)

Published in: Phys.Dark Univ. 42 (2023) 101348 • e-Print: 2302.09032 [astro-ph.CO]

The Local Physics Transition hypothesis

A fundamental physics transition induces a transition of M (absolute magnitude or luminosity) at z<0.01.

Resolves M tension and Hubble tension.

Can potentially also resolve growth tension if the transition is connected with weaker gravity at $z > z_{\pm}$

Hints for an M transition in SH0ES?

A Reanalysis of the Latest SH0ES Data for H₀: Effects of New Degrees of

Freedom on the Hubble Tension

Leandros Perivolaropoulos (Ioannina U.), Foteini Skara (Ioannina U.) (Aug 23, 2022)

Reanalyze the Local SHOES Calibrator

Calibrate Cepheids in anchor galaxies and in SnIa hosts 3492 equations fit for 47 unknown parameters (including M of SnIa)

jth Cepheid in ith galaxy $m_{H,i,i}^{W} = \mu_i + M_H^{W} + b_W [P]_{i,j} + Z_W [O/H]_{i,j}$ Cepheid calibration $m_{B,i} = \mu_i + M_B$ \blacksquare $M_B^{R21} = -19.25 \pm 0.03$ SnIa calibration $\Delta \mu_{N4258}$ $\Delta \mu_{LMC}$ m=µ(H₀)+M_B ->Hubble flow SnIa $m_{B,i} - 5 \log D_L(z_i) - 25 = M_B - 5 \log H_0$ 47 parameters μ_{M31} Δb_W A Comprehensive Measurement of the Local Value of the Hubble Constant with M_R 1 km s⁻¹ Mpc⁻¹ Uncertainty from the Hubble Space Telescope and the SH0ES $H_0 = 73.04 \pm 1.04 \, km \, s^{-1} \, Mpc^{-1}$ Zw Team Adam G. Riess (Baltimore, Space Telescope Sci. and Johns Hopkins U.), Wenlong Yuan (Johns Hopkins U.), Х Macri (Texas A-M), Dan Scolnic (Duke U.), Dillon Brout (Harvard-Smithsonian Ctr. Astrophys.) et al Δzp (Dec 8, 2021) Published in: Astrophys.J.Lett. 934 (2022) 1, L7 • e-Print: 2112.04510 [astro-ph.CO] $5 \log H_0$

Express the system as linear vector transformation

The latest SHOES measurement of H₀ : The distance ladder in practice

$$\mathbf{Y} = \mathbf{L}\mathbf{q}$$

Minimize
$$\chi^2$$
: $\chi^2 = (\mathbf{Y} - \mathbf{L}\mathbf{q})^{\mathrm{T}}\mathbf{C}^{-1}(\mathbf{Y} - \mathbf{L}\mathbf{q})$

Generalizing the baseline SH0ES modeling analysis: New degrees of freedom

Allow for a change (transition) of the SHOES modeling parameters M_W , b_W , Z_W , M_B at a given distance D_c (cosmic time t_c).

For example if M_B was allowed to change, the Cepheid modeling would have to change as:

$$\begin{split} m_{B,i}^{0} &= \mu_{i} + M_{B} & m_{B,i} - 5 \log D_{L}(z_{i}) - 25 = M_{B} - 5 \log H_{0} \\ & & \downarrow \\ m_{B,i} - 5 \log D_{L}(z_{i}) - 25 = M_{B}^{>} \Theta(D - D_{c}) + M_{B}^{<} \Theta(D_{c} - D) - 5 \log H_{0} \\ m_{B,i}^{0} &= \mu_{i} + M_{B}^{>} \Theta(D - D_{c}) + M_{B}^{<} \Theta(D_{c} - D) & \text{A Reanalysis of the Latest SH0ES Data for H_{0}: Effects of New Degrees of Freedom on the Hubble Tension} \\ \end{split}$$

Leandros Perivolaropoulos (Ioannina U.), Foteini Skara (Ioannina U.) (Aug 23, 2022)

Published in: Universe 8 (2022) 10, 502 • e-Print: 2208.11169 [astro-ph.CO]

The new matrix equation Y=L q would have the same data/constraints Y (labeled with their distance) the same covariance matrix C but different model matrix L and parameter vector q.

Generalized Local Physics Analyses I

Leandros Perivolaropoulos (Ioannina U.), Foteini Skara (Ioannina U.) (Aug 23, 2022) Published in: *Universe* 8 (2022) 10, 502 • e-Print: 2208.11169 [astro-ph.CO]

Generalized Local Physics Analyses II

Allow for different color parameter between Cepheid hosted SnIa and Hubble flow SnIa

$$m_B = \mu + M_B + \alpha x_1 + \beta (c - c_{ref}) \quad \text{for SN block,}$$

$$m_B = \mu + M_B + \alpha x_1 + \beta_{cal} (c - c_{ref}) \quad \text{for SN cal block.}$$

Intrinsic tension in the supernova sector of the local Hubble constant measurement and its #10 implications

Radosław Wojtak, Jens Hjorth (Jun 16, 2022)

Published in: Mon.Not.Roy.Astron.Soc. 515 (2022) 2, 2790-2799 • e-Print: 2206.08160 [astro-ph.CO]

Discrepancy between the two values of the color parameter.

Main Points / Conclusion

The Hubble tension is a tension between early time and late time cosmic distance calibrators. New physics and a change of the standard model is likely to emerge from this tension.

New physics is likely in both the early time calibrators (sound horizon at t_{rec} and horizon at t_{eq}) or late time calibrators (local cosmic physics/astrophysics).

A late transition event involving a sudden change of the SnIa intrinsic luminosity occurring less than 150 million years ago (z_{+} <0.01) is a hypothesis that deserves further investigation by reanalyzing the SH0ES data with new degrees of freedom.

There are hints in the SHOES data for such an ultralate physics transition.

Extra Slides

Results of the Generalized Analysis

-17.5

-18.0

-18.5

-19.0

-19.5

-20.0

0

 $M_B \,(\mathrm{mag})$

Transition^{b,c} M_B+Constraint 3551.34 1.031 -13.44 -7.27 $-5.893 \pm 0.018 \ -0.013 \pm 0.015 \ -0.217 \pm 0.045$ 68.202 ± 0.879 -19.249 ± 0.029 -19.402 ± 0.027

Hints for an M transition in SH0ES?

Measuring H₀–H(z) with standard candles: late time calibrators

Fit SnIa Standard Candles for H₀, 0.02<z<0.1: fit with kinematic expansion (0.01 < z < 0.1) $D_L(z, q_0) = cz \left[1 + \frac{1}{2}(1 - q_0)z \right]$ $d_L = c(1+z) \int_0^z \frac{dz'}{H(z')}$ measure locally (z<0.01, 40Mpc) using Fit (assume M is the same in the Hubble Degeneracy between M (measured at z < 0.01) and H₀ relative distance indicators (eg Cepheids) (fit at z > 0.01). No $E(z)=H(z)/H_0$ dependence. flow (z>0.01)) $\mathcal{M} = M + 5\log\frac{c/H_0}{Mpc} + 25 \qquad m_{th}(\Omega_{0m}, \mathcal{M}) = 5\log_{10}D_L(z; \Omega_{0m}) + \mathcal{M}(M, H_0)$ H₀ measurement using distance ladder: $H_0^{R21} = 73.04 \pm 1.04$ > $H_0^{P18} = 67.36 \pm 0.54 \text{ km s}^{-1} \text{Mpc}^{-1}$ $\mathcal{M} = M + 5log\frac{c/H_0}{Mpc} + 25$ $\mathcal{M}_{z > 0.01} = 23.80 \pm 0.01$ $M_{z<0.01}^{R21} = -19.25 \pm 0.03 \qquad \qquad M_{z>0.01} = M_{z<0.01}^{R21}$ $G_{\text{eff}}(z < 0.01) = G_{\text{eff}}(z > 0.01)$ Assumption: $G_{eff}(z < 0.01) = G_{eff}(z > 0.01)$

Inverse Distance Ladder and the M tension

Valerio Marra (Espirito Santo U. and Trieste Observ. and SISSA, Trieste and INFN, Trieste), Leandros Perivolaropoulos (Ioannina U.) (Feb 11, 2021)

Published in: Phys.Rev.D 104 (2021) 2, L021303 • e-Print: 2102.06012 [astro-ph.CO]

The M transition hypothesis

A fundamental physics transition induces a transition of M (absolute magnitude or luminosity) at z<0.01.

Resolves M tension and Hubble tension.

Can potentially also resolve growth tension if the transition is connected with weaker gravity at z>z

The M transition Model: Fit to the data

TABLE IV. Constraints at 68.3% CL of the cosmological parameters for the dark energy models explored in this work when the prior $M = -19.24 \pm 0.04$ mag of Eq. (3.1) from SH0ES is adopted. $\Delta \chi^2$ corresponds to the χ^2_{min} difference of each model with the Λ CDM case. Only transitions models provide a competitive fit to data as compared to Λ CDM.

Parameters	ACDM	wCDM	CPL	LwMT $(z_t \ge 0.01)$	PEDE	LMT $(z_t = 0.01)$
				(21 2 0.01)		(~1 = 0.01)
$\Omega_{\mathrm{m,0}}$	$0.3022^{+0.0051}_{-0.0052}$	0.2943 ± 0.0065	$0.2974_{-0.0068}^{+0.0067}$	$0.3073^{+0.0063}_{-0.0062}$	0.2789 ± 0.0049	0.3082 ± 0.0053
n_s	0.9704 ± 0.004	0.968 ± 0.004	0.967 ± 0.004	0.968 ± 0.004	0.963 ± 0.003	0.968 ± 0.004
H_0	68.36 ± 0.4	69.47 ± 0.72	69.25 ± 0.73	67.96 ± 0.55	71.85 ± 0.45	67.89 ± 0.40
$\sigma_{8,0}$	$0.8076^{+0.0058}_{-0.0062}$	$0.8215^{+0.0095}_{-0.0097}$	$0.8248^{+0.0096}_{-0.0097}$	$0.8084^{+0.0064}_{-0.0065}$	0.8531 ± 0.0059	0.8085 ± 0.0057
S_8	$0.8105^{+0.0097}_{-0.01}$	0.8135 ± 0.0098	$0.8210^{+0.0107}_{-0.0106}$	0.8181 ± 0.0100	0.8226 ± 0.0095	0.8194 ± 0.0099
M	-19.40 ± 0.01	-19.38 ± 0.02	-19.37 ± 0.02	-19.26 ± 0.04	-19.33 ± 0.01	-19.24 ± 0.04
ΔM	-	-	-	$-0.145^{+0.038}_{-0.035}$	-	-0.168 ± 0.039
$M_{>}$	-	-	-	-19.410 ± 0.011	-	-19.411 ± 0.011
Δw	-	-	-	unconstrained	-	-
a_t	-	-	-	> 0.986	-	-
w_0	-	-1.050 ± 0.027	-0.917 ± 0.078	-	-	-
w_a	-	-	$-0.53^{+0.33}_{-0.28}$	-	-	-
$\chi^2_{\rm min}$	3854	3851	3848	3833	3867	3835
$\Delta \chi^2$	-	-3	-6	-21	+13	-19

Late-transition versus smooth H(z)-deformation models for the resolution of the

Hubble crisis

George Alestas (Ioannina U.), David Camarena, Eleonora Di Valentino (Sheffield U.), Lavrentios Kazantzidis (Ioannina U.), Valerio Marra (Trieste Observ. and IFPU, Trieste) et al. (Oct 8, 2021) Published in: *Phys.Rev.D* 105 (2022) 6, 6 • e-Print: 2110.04336 [astro-ph.CO]

Horizon at t_{eq} : An independent early time standard ruler hint at with CMB H_0

Parameter degeneracies:

Measured with Hubble free expansion rate $E(z)=H(z)/H_0$ 1100>z>0.01 (CMB, BAO, SnIa): Accurate-no tension here

$$m_i(z_i) - 5 \log_{10} D_L(z_i; \Omega_{0m})$$

$$\mathcal{M} = M + 5\log\frac{c/H_0}{Mpc} + 25$$

A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s⁻¹ Mpc⁻¹ Uncertainty from the Hubble Space Telescope and the SH0ES

Baltimore, Space Telescope Sci. and Johns Hopkins icas M. Macri (Texas A-M), Dan Scolnic (Duke U.), Dillon Brout Astrophys.) et a

Publiched in: Astrophys. J.Left. 934 (2022) 1, L7 - e-Print: 212.04510 Measured with ultralate

time calibrators z<0.01 (no Hubble flow)

$$\mathcal{R}_s = r_s H_0$$

Planck 2018 results. VI. Cosmological parameters Planck Collaboration • N. Aghanim (Orsay, IAS) et al. (Jul 17, 2018) Published in: Astron.Astrophys. 641 (2020) A6, Astron.Astrophys. 652 (2021) C4 (erratum) • e-Print 1807.06209 [astro-ph.CO]

Measured from CMB, (Cepheids, TRGB etc) at $H_0^{R21} = 73.04 \pm 1.04$ BBN assuming ACDM E(z) before recombination.

 $\mathcal{R}_{eq} = r_{eq}H_0$

 $\int_{0}^{z_{d}} \int_{0}^{z_{d}} \frac{1}{E(z;\Omega_{0m})} \qquad \theta_{eq} \cdot \int_{0}^{z_{eq}} \frac{E(z) \text{ from } t_{eq} \text{ using shape}}{E(z;\Omega_{0m})} \text{ of LSS power spectrum.}$

Determining the Hubble constant without the sound horizon: A 3.6% constraint on H₀ from galaxy surveys, CMB lensing, and supernovae

Obtained from ACDM

Oliver H.E. Philcox (Princeton U., Astrophys. Sci. Dept. and Princeton, Inst. Advanced Study), Gerrit S. Farren (Cambridge U., DAMTP), Blake D. Sherwin (Cambridge U., DAMTP and Camb Baxter (Inst. Astron., Honolulu), Dillon J. Brout (Harvard-Smithsonian Ctr. Astrophys.) (Apr 6, 2022 Published in: Phys.Rev.D 106 (2022) 6, 063530 • e-Print: 2204.02984 [astro-ph.CO]

```
H_0^{\rm P18} = 67.36 \pm 0.54 \ \rm km \ s^{-1} Mpc^{-1}
    H_0 = 68.0^{+2.9}_{-3.2} \,\mathrm{km \, s^{-1} Mpc^{-1}}
```

Generic Distance Scale

Published in: Phys.Rev.D 90 (2014) 6, 063009 • e-Print: 1401.1923 [astro-ph.CO]

Theoretical Model: Scalar Tensor Theory

The Hubble tension

Philases, Inc.

Q.: What is the feature that distinguishes the two groups of H_o values?

Is it cosmic time of measurements? or

is it the use of local calibrators (distance ladder)?

The growth tension

Could gravity be weaker on cosmological scales compared to local scales (recent times)?

Cluster counts. II. Tensions, massive neutrinos, and modified gravity

Stéphane Ilić (Prague, Inst. Phys. and IRAP, Toulouse), Ziad Sakr (IRAP, Toulouse and USJ, Beirut), Alain Blanchard (IRAP, Toulouse) (Aug 1, 2019)

Published in: Astron.Astrophys. 631 (2019) A96 • e-Print: 1908.00163 [astro-ph.CO]

Distance residuals

The Pantheon+ Analysis: Cosmological Constraints

Dillon Brout (Harvard-Smithsonian Ctr. Astrophys.), Dan Scolnic (Duke U.), Brodie Popovic (Duke U.), Adam G. Riess (Baltimore, Space Telescope Sci. and Johns Hopkins U.), Joe Zuntz (Edinburgh U., Inst. Astron.) et al. (Feb 8, 2022) Published in: *Astrophys.J.* 938 (2022) 2, 110 • e-Print: 2202.04077 [astro-ph.CO]

Cosmic Dipoles

Secrest, N. J. et al. A Test of the Cosmological Principle with Quasars. *The Astrophysical Journal Letters*, **908**(2):L51, 2021

Analyzing the Large-Scale Bulk Flow using CosmicFlows4: Increasing Tension with the Standard Cosmological Model

Richard Watkins, Trey Allen, Collin James Bradford, Albert Ramon, Alexandra Walker et al. (Feb 3, 2023) e-Print: 2302.02028 [astro-ph.CO]

Singal, A. K. Large Peculiar Motion of the Solar System from the Dipole Anisotropy in Sky Brightness due to Distant Radio Sources. *The Astrophysical Journal Letters*, **742**(2):L23, 2011

Polar angle θ (degrees)

Cosmic Dipoles

Is the Observable Universe Consistent with the Cosmological Principle?

Pavan Kumar Aluri (Indian Inst. Tech. (BHU), Varanasi), Paolo Cea (INFN, Bari), Pravabati Chingangbam (Bangalore, Indian Inst. Astrophys.), Ming-Chung Chu (Hong Kong U.), Roger G. Clowes (Central Lancashire U.) et al. (Jul 12, 2022)

e-Print: 2207.05765 [astro-ph.CO]

Local measurements

One step distance methods in Hubble flow (z>0.01, local calibrator and sound horizon free)

Method	H ₀ (km/sec Mpc)	Arxiv-link	First author
Cosmic Chronometers	66.7±5.3	https://arxiv.org/pdf/2307.09501.pdf	Moresco
Cosmic Chronometers + HII gal.	65.9±3.0	https://arxiv.org/pdf/2208.03960.pdf	Jianchen Zhang et
Gravitational Waves + Kilonovae	69.6±5.5	https://arxiv.org/pdf/2205.09145.pdf	Bulla etal
Gravitational Waves + Kilonovae	67.0 ± 3.6	https://arxiv.org/pdf/2306.12468.pdf	Sneppen etal
Lensing Time Delays TDCOSMO I	74.2±1.6	https://arxiv.org/pdf/1912.08027.pdf	Millon etal
Lensing Time Delays TDCOSMO IV	67.4±4	https://arxiv.org/pdf/2007.02941.pdf	Birrer etal
Megamasers	66.0 ± 6.0	https://arxiv.org/pdf/1511.08311.pdf	Gao etal
Megamasers (SH0ES)	73.9±3.0	https://arxiv.org/pdf/2001.09213.pdf	Pesce etal
SZ effect	61±21	https://arxiv.org/pdf/astro-ph/0306073.pd	f Reese
Gamma ray attenuation	61.9±2.6	https://arxiv.org/pdf/2306.09878.pdf	Domínguez etal
T _{eq} standard ruler	64.8±2.4	https://arxiv.org/pdf/2204.02984.pdf	Philcox etal

The Hubble Crisis Approaches

Distance Ladder H(z) (M calibrator - Cepheids at z<0.01)

Local measurements

Distance ladder methods (local calibrators dependent)

H ₀ (km/sec Mpc)	Arxiv-link	First author	
76.0 ± 3.4	https://arxiv.org/pdf/2004.14499.pdf	Kourkchi etal	
73.3 ± 3.1	https://arxiv.org/pdf/2101.02221.pdf	Blakeslee etal	
75.57±15	https://arxiv.org/pdf/2305.17243.pdf	Jaeger etal	
73.3 ± 4.0	https://arxiv.org/pdf/1908.10883.pdf	Huang etal	
73.22 ± 2.06	https://arxiv.org/pdf/2304.06693.pdf	Scolnic etal	
73.04 ± 1.04	https://arxiv.org/pdf/2112.04510.pdf	Riess etal	
	$H_0(km/sec Mpc)$ 76.0 ± 3.4 73.3 ± 3.1 75.57±15 73.3 ± 4.0 73.22 ± 2.06 73.04 ± 1.04	H_0(km/sec Mpc)Arxiv-link76.0 ± 3.4https://arxiv.org/pdf/2004.14499.pdf73.3 ± 3.1https://arxiv.org/pdf/2101.02221.pdf75.57±15https://arxiv.org/pdf/2305.17243.pdf73.3 ± 4.0https://arxiv.org/pdf/1908.10883.pdf73.22 ± 2.06https://arxiv.org/pdf/2304.06693.pdf73.04 ± 1.04https://arxiv.org/pdf/2112.04510.pdf	

Could we be missing something with ALL local calibrators??

Could there be a physics change between local calibrator scales (z<0.01) and Hubble flow scales (z>0.01)?

Why is ΛCDM still our standard model?

Inertia due to the several standard model successes (human factor). <u>Lack of SIMPLE alternative model.</u> Too many tensions (tension noise).

Comparison with previous standard model changes From Steady State to Big Bang: Data and Simple alternative supported by simple theory (Friedman equations)

From sCDM to Λ CDM: Data and Simple Alternative (cosmological constant)

Peebles 1984, Efstathiou 1990 and Krauss-Turner 1995 (Universe age, matter power spectrum and peculiar velocities)

Q: What is the new simple and generic replacement of ACDM that will release most tensions with just 1-2 parameters?

For model building we need to understand deeply the data and the origins of the assumptions hidden in the tensions.

(New) Early Dark Energy Phase

The Ups and Downs of Early Dark Energy solutions to the Hubble tension: a review of models, hints and constraints circa 2023

Vivian Poulin (U. Montpellier 2, LUPM), Tristan L. Smith (Swarthmore Coll. and New York U., CCPP), Tanvi Karwal (Pennsylvania U.) (Feb 17, 2023)

e-Print: 2302.09032 [astro-ph.CO]

New Early Dark Energy as a solution to the H_0 and S_8 tensions Florian Niedermann, Martin S. Sloth (Jul 7, 2023) e-Print: 2307.03481 [hep-ph]

The AsCDM Model

Relaxing cosmological tensions with a sign switching cosmological constant

Özgür Akarsu (Istanbul, Tech. U.), Suresh Kumar (Indira Gandhi U., Meerpur), Emre Özülker (Istanbul, Tech U.), J. Alberto Vazquez (UNAM, CCF) (Aug 20, 2021)

Published in: Phys.Rev.D 104 (2021) 12, 123512 • e-Print: 2108.09239 [astro-ph.CO]

How can H(z) derived from late time calibrators (blue point) become consistent with H(z) derived from early time calibrator (black line)?

Change SnIa Intrinsic Luminosity (systematics or physics change at 0<z<0.1). (move blue point down)

> Change sound horizon scale (Early DE transition at t_{rec}). (shift black line up)

Deform H(z) by eg dynamical dark energy (problems with BAO, growth, M). (distort black line)

Late-time approaches to the Hubble tension deforming H(z), worsen the growth tension

George Alestas (Ioannina U.), Leandros Perivolaropoulos (Ioannina U.) (Mar 6, 2021)

Published in: *Mon.Not.Roy.Astron.Soc.* 504 (2021) 3, 3956-3962 • e-Print: 2103.04045 [astro-ph.CO]

An abrupt transition event may be needed to resolve the tension.

Predicted Anisotropy in the context of Spatial Transition

Issues on the SHOES Analysis for H₀

Q1: What are the SnIa calibration parameters?

A: The SnIa (bolometric) absolute magnitude M (or M_B).

Also, the SnIa color and stretch parameters c and s, and the Cepheid calibration parameters b_W (period-luminosity), Z_W (metallicity-luminosity), M_W (Cepheid zero-point amplitude), R_W (Cepheid color-luminosity)

Q2: Are the best fit values of these parameters consistent among different subgroups of the SnIa+Cepheid data

A2: There are hints for inhomogeneities which affect the best fit value of H_0 .

A Reanalysis of the Latest SH0ES Data for H_0 : Effects of New Degrees of Freedom on the Hubble Tension

Leandros Perivolaropoulos (Ioannina U.), Foteini Skara (Ioannina U.) (Aug 23, 2022) Published in: *Universe* 8 (2022) 10, 502 • e-Print: 2208.11169 [astro-ph.CO] Intrinsic tension in the supernova sector of the local Hubble constant measurement and its implications

Radosław Wojtak, Jens Hjorth (Jun 16, 2022)

Published in: Mon.Not.Roy.Astron.Soc. 515 (2022) 2, 2790-2799 • e-Print: 2206.08160 [astro-ph.CO]

Sensitivity of the Hubble Constant Determination to Cepheid Calibration Edvard Mortsell, Ariel Goobar, Joel Johansson, Suhail Dhawan (May 24, 2021) Published in: *Astrophys.J.* 933 (2022) 2, 212 • e-Print: 2105.11461 [astro-ph.CO]

Q3: What could be the origin of these inhomogeneities?

A3: Statistics, Systematics or New Physics.

Variants of the SH0ES Analysis for H₀ considered by SH0ES team

No variant allows for a break in the calibrator parameter values at some distance or with other criteria (except period luminosity with break at 10 days).

A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s⁻¹ Mpc⁻¹ Uncertainty from the Hubble Space Telescope and the SH0ES Team

Adam G. Riess (Baltimore, Space Telescope Sci. and Johns Hopkins U.), Wenlong Yuan (Johns Hopkins U.), Lucas M. Macri (Texas A-M), Dan Scolnic (Duke U.), Dillon Brout (Harvard-Smithsonian Ctr. Astrophys.) et al. (Dec 8, 2021)

Published in: Astrophys.J.Lett. 934 (2022) 1, L7 • e-Print: 2112.04510 [astro-ph.CO]

Measuring H(z) with the 2022 Pantheon+ datase' Published in: Astrophys. J. 938 (2022) 2, 110 • e-Print: 2202.04077 [astro-ph.CO]

 $\Delta D'_{i} = \begin{cases} \mu_{i} - \mu_{i}^{\text{Cepheid}} & i \in \text{Cepheid hosts} \\ \mu_{i} - \mu_{\text{model}}(z_{i}) & \text{otherwise,} \end{cases}$

The Pantheon+ Analysis: Cosmological Constraints

Dillon Brout (Harvard-Smithsonian Ctr. Astrophys.), Dan Scolnic (Duke U.), Brodie Popovic (Duke U.), Adam Riess (Baltimore, Space Telescope Sci. and Johns Hopkins U.), Joe Zuntz (Edinburgh U., Inst. Astron.) et al. (Feb 8, 2022)

On the homogeneity of SnIa absolute magnitude in the Pantheon+ sample Get access

Leandros Perivolaropoulos 🖾, Foteini Skara

Monthly Notices of the Royal Astronomical Society, Volume 520, Issue 4, April 2023, Pages 5110–5125, https://doi.org/10.1093/mnras/stad451

Pantheon+ likelihood: Utilizing the 77 Cepheid distance moduli μ_{Cephi} of SnIa in Cepheid hosts (no transition allowed): Best fit parameter values:

$$Q'_{i} = \begin{cases} m_{Bi} - M - \mu_{i}^{\text{Ceph}} & i \in \text{Cepheid hosts} \\ m_{Bi} - M - \mu_{\text{model}}(z_{i}) & \text{otherwise,} \end{cases}$$

 $M = -19.25 \pm 0.03$ $h = 0.734 \pm 0.01,$ $\Omega_{0m} = 0.333 \pm 0.018,$

Broken degeneracy between H_0 and M due to the 77 SnIa distance moduli in Cepheid hosts A way to fit H_0 along with other cosmological parameters without prior knowledge of M! Agreement with Brout et.al. 2022

Brout et al 2022: M not included in fit.

New degrees of freedom in the **Pantheon+likelihood**

Allow for a transition of M

at some distance d_r

On the homogeneity of SnIa absolute magnitude in the Pantheon+ sample Get access

Leandros Perivolaropoulos 🖾, Foteini Skara

Monthly Notices of the Royal Astronomical Society, Volume 520, Issue 4, April 2023, Pages 5110–5125, https://doi.org/10.1093/mnras/stad451

$$M = \begin{cases} M_{<} & d < d_{crit} \\ M_{>} & d > d_{crit}, \end{cases}$$

 $\mu_{crit} = 5log(d_{crit}/Mpc) + 25.$

New likelihood for Patheon+:

 $Q_i'' = \begin{cases} m_{Bi} - M_{<} - \mu_i^{\text{Cepheid}} & \text{iff } \mu_{i,S} < \mu_{crit}, \text{ and } i \in \text{Cepheid hosts} \\ m_{Bi} - M_{>} - \mu_i^{\text{Cepheid}} & \text{iff } \mu_{i,S} > \mu_{crit}, \text{ and } i \in \text{Cepheid hosts} \\ m_{Bi} - M_{<} - \mu_{\text{model}}(z_i) & \text{iff } \mu_{i,S} < \mu_{crit}, \text{ and } i \notin \text{Cepheid hosts} \\ m_{Bi} - M_{>} - \mu_{\text{model}}(z_i) & \text{iff } \mu_{i,S} > \mu_{crit}, \text{ and } i \notin \text{Cepheid hosts}, \end{cases}$

Q: 1. What is the quality of fit of ΛCDM with the new likelihood? 2. Are the best fit M_{2} , M_{2} consistent with each other and with the best fit M of the standard likelihood?

New degrees of freedom in the Pantheon+ likelihood

Q: Does this modeling of M_c, M_y affect the best fit values of other cosmological parameters?

Q: What is the origin of this tension? Systematics? New Physics? Both?

Hemisphere Comparison Method: Isotropy of Snla Absolute Magnitudes

On the isotropy of SnIa absolute magnitudes in the Pantheon+ and SH0ES

samples

$$M_{Bi} = m_{Bi}^0 - \mu_i$$

e-Print: 2305.12819 [astro-ph.CO]

Leandros Perivolaropoulos (May 22, 2023)

Standardized SnIa absolute magnitudes of Pantheon+.

$$\bar{M} \equiv \frac{M - M_{min}}{M_{max} - M_{min}}$$

Stand. Abs. Mag.

- 1. Select random direction and split sky in North-South hemispheres in given redshift bin.
- 20.6 Find weighted average of absolute magnitudes in each hemisphere 0.4 (M_N, M_S) and their uncertainties.

3. Define anisotropy level statistic:

 $\Sigma \equiv \frac{|M_N - M_S|}{\sqrt{\sigma_N^2 + \sigma_S^2}}$ 4. Find direction of maximum anisotropy level Σ_{max} .

5. Repeat for N isotropic Monte-Carlo samples to find anticipated range of Σ_{max}

Comparison of Pantheon+ M-anisotropy with isotropic Monte-Carlo samples.

Monte-Carlo simulated data are more anisotropic than real data (overestimated uncertainties?) Sudden changes appear of anisotropy level appear at low redshift bins Real data 1->2 bin

Comparison of SH0ES M-anisotropy with isotropic Monte-Carlo samples.

How frequent are these changes in Monte-Carlo isotropc data?

Cumulative low distance bin

Sudden change appear in anisotropy level of cumulative bin appear at about 30Mpc

Measuring H(z) with the 2022 Pantheon+ dataset

from SnIa in Cepheid hosts at z<0.01

1701 SnIa datapoints $(z_i, m_{Bi}, \mu_{Cephj})$, i=1,...,1701, j=1,...,77, 0.001< z_i , <2.26 Also provided $\mu_{SHOESi} = m_{Bi} - M_{Cepheid}$

Standard maximum likelihood of previous Pantheon sample (no μ_{Cephi})

$$\chi^{2} = \vec{Q}^{T} \cdot (C_{\text{stat+syst}})^{-1} \cdot \vec{Q}, \qquad Q_{i} = m_{Bi} - M - \mu_{\text{model}}(z_{i}), \qquad \mu_{\text{model}}(z_{i}) = 5\log(d_{L}(z_{i})/Mpc) + 25, \qquad M = M + 5$$

Degeneracy between H_0 and M(no way to fit H_0 without prior knowledge of M)

Another new likelihood for Pantheon+

Remove Hubble diagram distance moduli data with z<0.01 but keep distance moduli data of SnIa in Cepheid hosts.

 $Q_i^{\prime\prime\prime} = \begin{cases} m_{Bi} - M_{<} - \mu_i^{\text{Cepheid}} & \text{iff } \mu_{i,S} < \mu_{crit}, \text{ and } i \in \text{Cepheid hosts} \\ m_{Bi} - M_{>} - \mu_i^{\text{Cepheid}} & \text{iff } \mu_{i,S} > \mu_{crit}, \text{ and } i \in \text{Cepheid hosts} \\ 0 & \text{iff } z_i < 0.01 \\ m_{Bi} - M_{<} - \mu_{\text{model}}(z_i) & \text{iff } z_i > 0.01 \text{ and } \mu_{i,S} < \mu_{crit}, \text{ and } i \notin \text{Cepheid hosts} \\ m_{Bi} - M_{>} - \mu_{\text{model}}(z_i) & \text{iff } z_i > 0.01 \text{ and } \mu_{i,S} > \mu_{crit}, \text{ and } i \notin \text{Cepheid hosts}, \end{cases}$

$$\begin{split} M_{<} &= -\ 19.355 \pm 0.05, \\ M_{>} &= -\ 19.226 \pm 0.03, \\ h &= \ 0.74 \pm 0.01, \\ \Omega_{0m} &= \ 0.33 \pm 0.02, \\ d_{crit} &= 19.95 \pm 0.1 Mpc, \end{split}$$

The tension between M, and M, is smaller but a significant part of it remains

Snla luminosities in Pantheon+

Monte Carlo Simulation

Thus, the part of the $M_{c}-M_{s}$ inconsistency that is due to actual SnIa luminosity mismatch is at about 2σ level.

Generalizing the baseline SH0ES modeling analysis: New degrees of freedom

Allow for a change (transition) of the modeling parameters M_W , b_W , Z_W , M_B at a given distance D_c (cosmic time t_c).

For example if b_W was allowed to change, the Cepheid modeling would have to change as:

$$m_{H,i,j}^{W} = \mu_i + M_H^{W} + b_W [P]_{i,j} + Z_W [O/H]_{i,j}$$

A Reanalysis of the Latest SH0ES Data for H_0 : Effects of New Degrees of Freedom on the Hubble Tension

Leandros Perivolaropoulos (Ioannina U.), Foteini Skara (Ioannina U.) (Aug 23, 2022) Published in: *Universe* 8 (2022) 10, 502 • e-Print: 2208.11169 [astro-ph.CO]

 $m_{H,i,j}^{W}(D) = \mu_{i} + M_{H}^{W} + b_{W}^{>}\Theta(D - D_{c})[P]_{i,j} + b_{W}^{<}\Theta(D_{c} - D)[P]_{i,j} + Z_{W}[O/H]_{i,j}$

The new matrix equation Y=L q would have the same data/constraints Y (labeled with their distance) the same covariance matrix C but different model matrix L and parameter matrix q.

Results of the Generalized SHOES Analysis

A Reanalysis of the Latest SH0ES Data for H₀: Effects of New Degrees of Freedom on the Hubble Tension

Leandros Perivolaropoulos (Ioannina U.), Foteini Skara (Ioannina U.) (Aug 23, 2022) Published in: *Universe* 8 (2022) 10, 502 • e-Print: 2208.11169 [astro-ph.CO] Spontaneous transition of the best fit value of H_0 when a transition at D_c ~50Mpc is allowed.

The volumetric redshift bias: A known <u>but uncorrected</u> systematic in Pantheon+

Problem: There are more galaxies in the outer shell than in the inner shell due to larger volume of the outer shell!

More galaxies at higher distances are incorrectly projected to lower distance in the Hubble diagram due to peculiar velocities! Thus: $d-d_{ACDM}(z)>0$ for z<0.01 where the effect is important.

The volumetric redshift bias

The Pantheon+ Analysis: Cosmological Constraints

Dillon Brout (Harvard-Smithsonian Ctr. Astrophys.), Dan Scolnic (Duke U.), Brodie Popovic (Duke U.), Adam G. Riess (Baltimore, Space Telescope Sci. and Johns Hopkins U.), Joe Zuntz (Edinburgh U., Inst. Astron.) et al. (Feb 8, 2022)

Published in: Astrophys.J. 938 (2022) 2, 110 • e-Print: 2202.04077 [astro-ph.CO]

Monte Carlo Simulation

Steps:

1. Group SnIa that are in the same host and find the weighted mean absolute magnitude corresponding to each j host:

2. For a critical distance d_c split the host absolute magnitudes in low distance and high distance bins e.g.

3. For each critical distance d_{crit} , define the $\Sigma(\mu_{crit}) \equiv \frac{|M_{>} - M_{<}|}{\sqrt{\sigma_{M_{>}}^{2} + \sigma_{M_{<}}^{2}}}$

 $\mu_{crit} = 5log(d_{crit}/Mpc) + 25.$

4. In the real data we have $\Sigma_{max} = 2.75$, at $d_{crit}=22.4$ Mpc. Q: How often would a larger Σ_{max} occur in Monte Carlo simulated SH0ES/Pantheon+ SnIa in Cepheid host data?

 $M_{<} = \frac{\sum_{i=1}^{N_{k}} M_{i} / \sigma_{i}^{2}}{\sum_{i=1}^{N_{k}} 1 / \sigma_{i}^{2}}$ $\sigma^{2}(M_{<}) = \frac{1}{\sum_{i=1}^{N_{k}} 1 / \sigma_{i}^{2}}$

 $M_{j} = \frac{\sum_{i=1}^{N_{j}} M_{i} / \sigma_{i}^{2}}{\sum_{i=1}^{N_{j}} 1 / \sigma_{i}^{2}}$

 $\sigma^2(M_j) = \frac{1}{\sum_{i=1}^{N_j} 1/\sigma_i^2}$

Theoretical Model: Scalar Tensor Theory

Gravitational transitions via the explicitly broken symmetron screening mechanism

Leandros Perivolaropoulos (Ioannina U.), Foteini Skara (Ioannina U.) (Mar 19, 2022) Published in: *Phys.Rev.D* 106 (2022) 4, 043528 • e-Print: 2203.10374 [astro-ph.CO]

Scalar Tensor Transition:
$$S = \int d^4x \sqrt{|g|} \left[\frac{1}{2} \xi \varphi^2 R - \frac{1}{2} (\partial \varphi)^2 - V(\varphi) + \mathcal{L}_m \right], \qquad 8\pi G_N = \xi^{-1} v^{-2}$$

v: potential minimum

Hubble scale

Alternative: Topological Quintessence

Topological Quintessence

Juan C. Bueno Sanchez (Madrid U.), Leandros Perivolaropoulos (Ioannina U.) (Oct, 2011) Published in: *Phys.Rev.D* 84 (2011) 123516 • e-Print: 1110.2587 [astro-ph.CO]

$$\Delta = M_{\rm Pl} \sim 10^{19} {
m GeV},$$
 Cosmological Constant: $\Lambda = V(v)$
A phase transition (false vacuum decay) would
induce a transition in the strength of

phase transition (talse vacuum decay) would induce a transition in the strength of gravity as well

Global monopole field dark energy (natural dipoles)

Main Questions

Q1: Is a G_{eff} late gravity transition consistent with current constraints of G_{eff} ? A1: Yes. Only the current/local time derivative of G_{eff} is heavily constrained.

Q2: Are there hints for a gravitational fundamental physics transition in astrophysical data on scales less than 70Mpc ($z_t < 0.02$)?

A2: Yes, there are some 20 level hints in the Cepheid, Patheon+ and Tully-Fisher data. (LP recent work)

Q3: Are there theoretical models that naturally and generically predict this type of transition?

A3: Yes, a false vacuum decay of a non-minimally coupled scalar field (eg chameleon or symmetron field) can generically induce it (first order phase transition)

Topological Quintessence

Juan C. Bueno Sanchez (Madrid U.), Leandros Perivolaropoulos (Ioannina U.) (Oct, 2011)

Published in: Phys. Rev. D 84 (2011) 123516 • e-Print: 1110.2587 [astro-ph.CO]

Gravitational transitions via the explicitly broken symmetron screening mechanism

Leandros Perivolaropoulos (Ioannina U.), Foteini Skara (Ioannina U.) (Mar 19, 2022) Published in: *Phys.Rev.D* 106 (2022) 4, 043528 • e-Print: 2203.10374 [astro-ph.CO]