

JUNO

João Pedro Athayde Marcondes de André for the JUNO Collaboration

IPHC/IN2P3/CNRS

The JUNO Collaboration

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	Wu Yi U.	Italy	INFN di Frascati
Belgium	Universite Libre de Bruxelles	China	Wuhan U.	Italy	INFN-Ferrara
Brazil	PUC	China	Xi'an JT U.	Italy	INFN-Milano
Brazil	UEL	China	Xiamen University	Italy	INFN-Milano Bicocca
Chile "	SAPHIR	China	Zhengzhou U.	Italy	INFN-Padova
Chile	UNAB	China	NUDT	Italy	INFN-Perugia
China	BISEE	China	CUG-Beijing	Italy	INFN-Roma 3
China	CAGS	China	ECUT-Nanchang City	Pakistan	PINSTECH (PAEC)
China	ChongQing University	China	CDUT-Chengdu	Russia	INR Moscow
China	DGUT	China	SUSTech-Shenzhen	Russia	JINR
China	Guangxi U.	China 🤻 -	KNRC	Russia	MSU
China	Harbin Institute of Technology	Czech	Charles U.	Slovakia	FMPICU
China	IHEP	Finland	University of Jyvaskyla	Taiwan-China	National Chiao-Tung U.
China	Jinan U.	France	IJCLab Orsay	Taiwan-China	National Taiwan U.
China	Nanjing U.	France	LP2i Bordeaux	Taiwan-China	National United U.
China	Nankai U.	France	CPPM Marseille	Taiwan-China	NKNU
China	NCEPU	France	IPHC Strasbourg	Taiwan-China	NTUT
China	Shandong U.	France	Subatech Nantes	Thailand	NARIT
China	Shanghai JT U.	Germany	RWTH Aachen U.	Thailand	PPRLCU
China	IGG-Beijing	Germany	TUM ~.	Thailand	SUT
China	SYSU	Germany	U. Hamburg	U.K.	U. Liverpool
China	Tsinghua U.	Germany	GSI	U.K.	U. Warwick
China	UCAS	Germany	U. Mainz	USA	UMD-G
China	U. of South China	Germany	U. Tuebingen	USA	UC Irvine
China	IMP	Italy	INFN Catania		

74 institutes, \sim 700 collaborators

JUNO physics

"Neutrino Physics with JUNO," J. Phys. G **43** (2016) no.3, 030401 "JUNO Physics and Detector," Prog. Part. Nucl. Phys. **123** (2022), 103927

- Neutrino Mass Ordering (NMO)
- Precision measurement of oscillation parameters
- Atmospheric neutrinos
- Geoneutrinos

- Supernova (SN) neutrinos
- Diffuse SN neutrino background
- Solar neutrinos
- Nucleon decay & Exotic searches

Research	Expected signal	Energy region	Major backgrounds
Reactor antineutrino	60 IBDs/day	0–12 MeV	Radioactivity, cosmic muon
Supernova burst	5000 IBDs at 10 kpc	$0-80~\mathrm{MeV}$	Negligible
	2300 elastic scattering		
DSNB (w/o PSD)	2-4 IBDs/year	$10-40~\mathrm{MeV}$	Atmospheric ν
Solar neutrino	hundreds*per year for ⁸ B	$0-16~\mathrm{MeV}$	Radioactivity
Atmospheric neutrino	hundreds per year	$0.1 - 100 \mathrm{GeV}$	Negligible
Geoneutrino	$\sim 400~{ m per~year}$	$0-3~{ m MeV}$	Reactor ν

^{*} in fact, 6k ν ES signals from ⁸B per year expected after cuts with U/Th @ 10⁻¹⁷ level [JUNO, CPC 45 (2021) 023004]

Measuring reactor $\bar{\nu}_e$: Inverse Beta Decay (IBD)

- Detected via IBD: $\bar{\nu}_e + p \rightarrow n + e^+$
 - ▶ IBD used since discovery of $\bar{\nu}$
 - ▶ Prompt+delayed signal ⇒ large background suppression

• $E_{vis}(e^+) \simeq E(\bar{\nu}) - 0.8 \text{ MeV} \leftarrow \text{used to as proxy for antineutrino energy}$

Neutrino oscillations with Reactor Antineutrinos

- Detected $\bar{\nu}_e$ energy 2–8 MeV
 - Only sensitive to \(\bar{\nu}_e \rightarrow \bar{\nu}_e\)

- Distance: selects "oscillation regime"
 - ▶ JUNO at maximum $\bar{\nu}_e$ disappearance
 - First experiment to see both Δm^2

JUNO site

• \sim 700 m rock overburden (1800 m.w.e.) to suppress atmo. μ

Expected reactor $\bar{\nu}_e$ spectrum in JUNO

"Sub-percent precision measurement of neutrino oscillation parameters with JUNO," Chin. Phys. C 46 (2022) no.12, 123001

- Energy resolution smears low energy oscillations
 - critical importance of energy resolution

Neutrino Mass Ordering using Reactor Neutrinos

"Potential to identify neutrino mass ordering with reactor antineutrinos at JUNO," Chin. Phys. C **49** (2025) no.3, 033104

- 3σ in \sim 7 years \times 26.6 GW_{th} exposure
- Complementary to other experiments!

Precision Measurement of Neutrino Oscillation Parameters

"Sub-percent precision measurement of neutrino oscillation parameters with JUNO," Chin. Phys. C 46 (2022) no.12, 123001

	Δm^2_{31}	Δm^2_{21}	$\sin^2 heta_{12}$	$\sin^2 heta_{13}$
JUNO 6 years	$\sim \! 0.2\%$	$\sim \! 0.3\%$	$\sim \! 0.5\%$	$\sim 12\%$
PDG2020	1.4%	2.4%	4.2%	3.2%

The JUNO detector

Top Tracker (TT)

- Precise $\hat{\mu}$ tracker
- 3 layers of plastic scintillator
- ullet \sim 60% of area above WCD

Calibration House

Water Cherenkov Detector (WCD)

- 35 kton ultra-pure water
- 2.4k 20" PMTs
 - + extra PMTs: 384 20" & 600 8" PMTs
- ullet High μ detection efficiency
- Protects CD from external radioactivity
 a neutrons from cosmic-rays

Central Detector (CD) $-\bar{\nu}$ target

- Acrylic sphere with 20 kton liquid scint.
- 17.6k 20" PMTs + 25.6k 3" PMTs
- 3% energy resolution @ 1 MeV

JUNO construction

- CD and WCD finished end 2024
- TT started installation in Jan 2025, completed by Jun 2025

Filling the detector

2024-12-18 Start of water filling

2025-02-01 End of water filling

Water phase

2025-02-08 Start of LS filling

Mixed Water/LS phase

2025-08-22 End of LS filling

Calibrations with full LS

2025-08-26 Start of data taking

JUNO Water Phase data: calibration

- ∼7 days of pure water in CD
- AmBe/AmC calibration sources deployed along vertical axis
- Clear peaks in number of hits distribution close to source position

JUNO Water Phase data: neutrons from μ

- Focusing on a few hours at end of the water-phase
- Looking for spallation neutrons from μ track
 - ▶ Cluster of low-energy ($n_{20} < 70$) events close to μ track
 - **Determine neutron yield using** $\varepsilon = (3.3 \pm 0.4)\%$ from calibrations

Cleanliness of JUNO

- Radiopurity control of raw materials (JHEP 11 (2021) 102)
 - Careful screening of materials
 - ▶ 15% better than specifications!
- Radiopurity control during installation/filling
 - Leak check of all joints for ²²²Rn and ⁸⁵Kr
 - Cleaning/washing of all pipes & vessels
 - Clean room environment during installation
 - Acrylic surface treatment & protection
 - LS filling after water washing & replacing water

Veto Water

- U/Th $< 0.4 \cdot 10^{-15}$ g/g
- $^{\circ}$ ²²²Rn < 10 mBq/m³
- \circ ²²⁶Rn < 1 mBq/m³
- Single (R < 17.2 m & E > 0.7 MeV) rates < 7 Hz (design 7.2 Hz)

* Borexino: PRL 101 (2008) 091302

LS: very close to other solar ν exp

	JUNO	Borexino*
²³⁸ U	$< 3 \cdot 10^{-17} \text{ g/g (small FV)} < 1 \cdot 10^{-16} \text{ g/g (from Rn fit)}$	$(1.6 \pm 0.1)10^{-17} \text{ g/g}$
²³² Th	$< 1 \cdot 10^{-16} \text{ g/g (R<13 m)}$	$(6.8 \pm 1.5) 10^{-18} \text{ g/g}$
²¹⁰ Po	< 1 · 10 ⁵ cpd/kt	8 · 10 ⁴ cpd/kt

Likely impossible to recirculate LS

Detector calibration

- 1D, 2D and 3D scan systems
 - ► ACU, CLS, GT tested
 - See JHEP 03 (2021), 004 for details
- For now, most sources deployed along z-axis

Detector calibration

- 1D, 2D and 3D scan systems
 - ACU, CLS, GT tested
 - See JHEP 03 (2021), 004 for details
- For now, most sources deployed along z-axis

A first look at commissioning data: light yield

- Light yield from n-H capture in center of detector:
 - Our last expectation (Chin.Phys.C 49 (2025) 1, 013003); 1665 PE/MeV
 - ★ This was used for our last NMO paper
 - From commissioning data: 1786 PE/MeV
 - ★ About 10% larger than expected!

JUNO August 2025

10000

A first look at commissioning data: energy uniformity

- R < 16 m: residual non uniformity better than 0.5% along z-axis
- Edge effects still exist, more calibration data needed

A first look at commissioning data: energy resolution

- For α from ²¹⁴Po: ~3% @ 0.92 MeV
- From ⁶⁸Ge: ~3.4% @ 2×511 keV
 - Expectation from MC was 3.1%
- Further improvement needed: more calibration data, noise/flasher removal, reconstruction, . . .
 - Data taking just started!

Conclusions

- JUNO has unique properties: large target mass & good energy resolution
 - JUNO-TAO for reference reactor spectrum
 - Very large photo-coverage & high LS light yield
 - Strict radiopurity requirements
- Precision oscillation measurements with reactor $\bar{\nu}_e$ flux
 - First simultaneous observation of solar and atmospheric oscillations in same experiment
 - ▶ Measurement of NMO not relying on matter effects $\Rightarrow 3\sigma$ in ~ 7 years (reactor only)
 - ightharpoonup < 0.5% precision on $\sin^2 \theta_{12}$, Δm_{21}^2 , and Δm_{32}^2
- Rich physics & astrophysics program beyond reactor- $\bar{\nu}$ analysis
- JUNO just started taking data, first results very encouraging:
 - ▶ Cleanliness very close to other solar ν experiments
 - Larger than expected light yield at center
 - < 0.5% residual non-uniformity below 16 m</p>
 - energy resolution a bit worse than expected, but still plenty of room to improve
- Stay tuned for more physics results soon!

Backup

Measuring NMO with reactor neutrinos

method: S. T. Petcov, M. Piai, Phys. Lett. B 533 (2002) 94; formulas: S. F. Ge, et al, JHEP 1305 (2013) 131

$$P_{ee} = \left| \sum_{i=1}^{3} U_{ei} \exp\left(-i\frac{m_{i}^{2}}{2E_{i}}\right) U_{ei}^{*} \right|^{2}$$

$$= 1 - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} (\Delta_{21})$$

$$- \cos^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} (\Delta_{31})$$

$$- \sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} (\Delta_{32}),$$

$$P_{ee} = 1 - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} (\Delta_{21})$$

$$- \sin^{2} 2\theta_{13} \sin^{2} (|\Delta_{31}|)$$

$$- \sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} (\Delta_{21}) \cos (2|\Delta_{31}|)$$

$$\pm \frac{\sin^{2} \theta_{12}}{2} \sin^{2} 2\theta_{13} \sin (2\Delta_{21}) \sin (2|\Delta_{31}|),$$

$$\Delta_{ij} \equiv \frac{\Delta m_{ij}^{2} L}{4E_{\nu}}, \quad (\Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2})$$

• Orderings: Normal \rightarrow +; Inverted \rightarrow -

Updates to reactor $\bar{\nu}_e$ analysis

- Several updates since 2016
 - better PMT detection efficiency
 - lower radioactive background
 - 2 less reactor cores at Taishan
 - ▶ overburden reduced by ~50 m
 - improved algorithms for veto strategy
 - ightharpoonup spectrum from JUNO-TAO

• . .

		Relative rate	Shape
Event type	Rate [/day]	uncertainty	uncertainty
Reactor IBD signal	60 -> 47	-	-
Geo-ν's	1.1 -> 1.2	30%	5%
Accidental signals	0.9 -> 0.8	1%	negligible
Fast-n	0.1	100%	20%
⁹ Li/ ⁸ He	1.6 > 0.8	20%	10%
¹³ C(α,n) ¹⁶ O	0.05	50%	50%
Global reactors	0 -> 1.0	2%	5%
Atmospheric v's	0 → 0.16	50%	50%

J. Phys. G 43:030401 (2016) → this update

J. P. A. M. de André for JUNO

Energy resolution update

JUNO Simulation Preliminary	Resolution	Ref. poster @ Neutrino 202
Estimated with PE yield	3.0%	JHEP03(2021)004
20-inch PMT PDE (27% \rightarrow 30.1%)	-	Mass testing data
More realistic optical model	-	10.5281/zenodo.6785356
New detector geometries	-	10.5281/zenodo.6805544
Now	2.9%	10.5281/zenodo.6804557

Note: not all analyses using new numbers yet!

24/21

NMO via combined fits of JUNO and other experiments

- Intrinsic differences between $\nu_e \to \nu_e$ and $\nu_\mu \to \nu_\mu$, precise measurements of Δm^2 obtain different best-fit values for Δm_{31}^2 when wrong ordering assumed
 - ▶ JUNO independent of δ_{CP} , θ_{23} , and doesn't rely on matter effects
- Dedicated studies performed with external priors and with other experiments

IceCube [1306.3988] & [1911.06745], accelerators [2008.11280], KM3NeT/ORCA
 [2108.06293]

Precision Measurement of Neutrino Oscillation Parameters: σ

"Sub-percent precision measurement of neutrino oscillation parameters with JUNO," Chin. Phys. C 46 (2022) no.12, 123001

Diffuse Supernova Neutrino Background

"Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO," JCAP 10 (2022), 033

- ▶ @ 3 years \rightarrow 3 σ sensitivity
- ▶ @ 10 years \rightarrow 5 σ sensitivity

- Improvements in sensitivity due to:
 - Reduced expected background
 - Increase signal efficiency (50% → 80%) w/ PSD
 - Better DSNB model

Core Collapse Supernova Neutrinos

See poster 10.5281/zenodo.6785184 from Neutrino 2022, paper in preparation

- Capability to detect pre-SN neutrinos from close SN-candidates
- >50% efficiency to detect CCSN up to 250–300 kpc
 - ightharpoonup For reference: Milky Way diameter \sim 30 kpc; Andromeda galaxy distance \sim 780 kpc

Solar Neutrinos

- Nuclear fusion in Sun $\Rightarrow \nu_e$
 - ν energy depends on specific reaction
 - Probe Sun composition
- JUNO expected to be able to measure ⁸B, ⁷Be, pep, CNO
 - Main limitation from radioactive backgrounds

Solar Neutrinos: 8B @ JUNO

"Feasibility and physics potential of detecting ⁸B solar neutrinos at JUNO," Chin. Phys. C 45 (2021) no.2, 023004 and "Model Independent Approach of the JUNO 8B Solar Neutrino Program," arXiv:2210.08437

- Also visible:
 - $\nu_{\rm v} + {}^{13}{\rm C} \; {\rm NC} : 3.7 \; {\rm MeV} \; \gamma$
 - ν_{e} +13C CC: 2.2 MeV β^{+}

Solar Neutrinos: ⁷Be, pep, CNO @ JUNO

"JUNO sensitivity to ⁷Be, pep, and CNO solar neutrinos," arXiv:2303.03910 Radiopurity scenario ···· BX result Exposure [kton v] Exposure (kton v) p.e. 800 1000 1200 1400 1600 1800 2000 2200 2400 100 Be-v rate relative uncertainty [%] [⊥] ⁷Be v IBD radiopurity 10^{7} pep v Baseline radiopurity 13N-ν Ideal radiopurity 10⁶ Subtracted BX-like radiopurity Events / p.e. 10² 10 Time [v] 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5 Time [v] Energy [MeV] Radiopurity scenario 800 1000 1200 1400 1600 1800 2000 2200 2400 --- σ_o (BX) ...σ, (BX) ⁷Be ν 10⁷ Exposure (kton v) pep v Baseline radiopurity ¹³N-ν Ideal radiopurity 10⁶ BX-like radiopurity TFC-Tagged Events / p.e. 10³ 102 10 10

Time [v]

Time [v]

Energy [MeV]

Other topics in JUNO Geo $\bar{\nu}$

Also potential to constrain Th/U ratio

Nucleon decay

- Triple coincidence signature from $p \rightarrow \bar{\nu} + K^+$
- Other nucleon decay modes also being investigated

Among other topics discussed in J. Phys. G **43** (2016) no.3, 030401 and Prog. Part. Nucl. Phys. **123** (2022), 103927

JUNO-TAO

"TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution," arXiv:2005.08745

- JUNO-TAO provides reference for reactor spectrum
- Better energy resolution than JUNO (4500 PE/MeV)

JUNO-TAO detector:

- 1 ton fiducial volume Gd-LS detector
 - 30 m from one of Taishan's
 4.6 GW_{th} reactor core
 - ► 30× JUNO event rate
- 10 m² SiPM of 50% photon detection efficiency (PDE) operated at −50°C
 - >95% photo-coverage

JUNO-TAO – Physics potential

"TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution," arXiv:2005.08745

The JUNO detector – inside Water Cherenkov Detector

- 35 kt ultrapure water
- 2400 20" MCP PMTs
- μ det. eff. > 99.5%
- passive shield for radioactivity
- 222 Rn < 10 mBq/m³
- Keep temperature@ (21 ± 1)°C

The JUNO detector – CD Support Structure

 Acrylic Sphere supported by 590 connecting bars

The JUNO detector – CD Support Structure and Lift Platform

 Acrylic Sphere supported by 590 connecting bars

The JUNO detector – CD Support Structure and Lift Platform

- Assembly of SS finished now
- Starting to install acrylic sphere

The JUNO detector – Acrylic Sphere

- 265 acrylic plates
- thickness: 124±4 mm
- radiopurity: U/Th/K < 1 ppt
- Each plate:
 - polished
 - cleaned
 - PE protective film added
- PE film to be removed after installation

The JUNO detector - Liquid Scintillator

Four purification plants to achieve target radio-purity 10⁻¹⁷ g/g U/Th and 20 m attenuation length at 430 nm.

Eur. Phys. J. C 81 (2021) no.11, 973

The JUNO detector – OSIRIS

"The design and sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS", Eur. Phys. J. C **81** (2021) no.11, 973

- Monitor LS radiopurity during before/during filling
- Few days: U/Th $\sim 10^{-15}$ g/g (IBD requirement)
- 2–3 weeks: U/Th $\sim 10^{-17}$ g/g (solar "ideal" case)
- Can also measure ¹⁴C, ²¹⁰Po, ⁸⁵Kr

The JUNO detector – Top Tracker

"The JUNO experiment Top Tracker," Nucl. Instrum. Meth. A 1057 (2023). 168680

Refurbished from OPERA experiment

- Very precise μ tracking
 - ► 2.6 × 2.6 cm² XY granularity
 - ▶ 0.2° median angular resolution
- Provide well reconstructed μ sample for other systems

Jie Znau

Photomultiplier Tubes

All PMTs produced, tested, and instrumented with waterproof potting

		LPMT (20-inch)		SPMT (3-inch)	
		Hamamatsu	NNVT	HZC	
Quantity		5000	15012	25600	
Charge Collection		Dynode	MCP	Dynode	
Photon Detection Effic	eiency	28.5%	30.1%	25%	
Mean Dark Count Rate	Bare	15.3	49.3	0.5	
[kHz]	Potted	17.0	31.2		
Transit Time Spread (d	ກ) [ns]	1.3	7.0	1.6	
Dynamic range for [0-10] MeV		[0, 100] PEs		[0, 2] PEs	
Coverage		75%		3%	
Reference		arXiv: 2205.08629		NIM.A 1005 (2021) 165347	

12.6k NNVT PMTs with highest PDE are selected for light collection from LS and the rest are used in the Water Cherenkov detector.

Neutrino2022

Electronics Posters: #216, # 218, #270

Front-End board Underwater electronics to improve signal-to-noise ratio for better energy resolution

128 3-inch PMTs connected to one underwater box

Electronics assembly ongoing

Calibration

1D,2D,3D scan systems with multiple calibration sources to control the energy

Cable system finished prototype test

Shadowing effect uncertainty from Teflon capsule of radioactive sources: < 0.15%

Radiopurity control

Reduced by 15% compared to the design. Ref: JHEP 11 (2021) 102

•	•	•	
Singles (R < 17.2 m, E > 0.7 MeV)	Design [Hz]	Change [Hz]	Comment
LS	2.20	0	
Acrylic	3.61	-3.2	10 ppt -> 1 ppt
Metal in node	0.087	+1.0	Copper -> SS
PMT glass	0.33	+2.47	Schott -> NNVT/Ham
Rock	0.98	-0.85	3.2 m -> 4 m
Radon in water	1.31	-1.25	$200 \text{ mBq/m}^3 -> 10 \text{ mBq/m}^3$
Other	0	+0.52	Add PMT readout, calibration sys
Total	8.5	-1.3	

Radiopurity control on raw material:

- ✓ Careful material screening
- ✓ Meticulous Monte Carlo Simulation.
- ✓ Accurate detector production handling

Liquid Scintillator Filling

- ✓ Recirculation is impossible at JUNO due to its large size
- → Target radiopurity need to be obtained from the beginning
- ✓ Strategies:
- 1. Leakage (single component < 10⁻⁶ mbar·L/s)
- 2. Cleaning vessel before filling
- 3. Clean environment
- 4. Water/LS filling

Update of energy resolution

UN	0
	V

Change	Light yield in detector center [PEs/MeV]	Energy resolution	Reference
Previous estimation	1345	3.0% @1MeV	JHEP03(2021)004
Photon Detection Efficiency (27%→30%)	+11%↑		arXiv: 2205.08629
New Central Detector Geometries	+3%↑	2.9% @ 1MeV	Poster #184
New PMT Optical Model	+8%↑	(Poster #519)	EPJC 82 329 (2022) Poster #815

Positron energy resolution is understood:

- Scintillation guenching effect
 - LS Birks constant from table-top measurements
- · Cherenkov radiation
 - Cherenkov yield factor (refractive index & re-emission probability) is re-constrained with Daya Bay LS non-linearity
- Detector uniformity and reconstruction

Dark noise

Positron energy resolution

$$\frac{\sigma}{E} = \sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + b^2 + \left(\frac{c}{E}\right)^2}$$

Photon statistics

- Annihilation-induced γs
- Dark noise
- Scintillation quenching effect
 - LS Birks constant (kB)
- Cherenkov radiation
 - LS refractive index
 - LS re-emission probability
 - Cherenkov yield scale factor (fC)
- Detector uniformity and reconstruct
- kB & fC are key parameters to predict energy resolution

- Firstly attempt to constrain kB & fC with Daya Bay LS nonlinearity
 - Strong correlation between kB and fC
- Solved by combining a series of table-top measurements on scintillation quenching effect
 - kB of LS is determined to be 12.05×10^{-3} g/cm²/MeV
- Re-constrain fC with Daya Bay LS non-linearity
 - fC is determined to be 0.517

Light yield evolution

PMT PDE

- Averaged PDE:27.0%→30.1%
- 27.0% is based on the original requirement of QE~30%, CE~90%
- 30.1% is the selected mean PDE, from PMT mass testing system

New Geometries

- Reflections on them are taken into consideration
- Yield 2.7% more photons

New PMT Optical Model

Optical Processes in PMT

- Reflection on photocathode
- PDE angular response
- Multiple reflections inside PMT

- ◆ Multilaver thin film theory
- ◆ Experimental tests
- ◆ GEANT4 simulation

Poster #815