

The Southern Wide-field Gamma-ray Observatory

Il EU Workshop on Water Cherenkov Experiments for Precision Physics – Sept. 2025

Jim Hinton

MAX-PLANCK-INSTITUT

FUR KERNPHYSIK

Science Themes

Cosmic Particle Acceleration
Cosmic Ray Impact

Multi-Messenger Astronomy

Gravitational Wave Transients The Cosmic Neutrino Sky UHE Cosmic Ray Origin Axion-like Particles
Lorenz Invariance Violation
Dark Matter

Beyond Standard Model Physics

Approaches to Ground-based γ -ray Astronomy

Current Water Cherenkov Detector Arrays

Up to 45 degree zenith angle

The SWGO Field

The Collaboration

Founded 2019, now 16 Countries

Design Optimisation

- Science performance based optimisation in a wide phase space
- O Large scale simulations with
 - → 6 detector unit options, single and double layer Cherenkov detectors
 - → 7 layouts, now fine-tuning
- Convergence on inner (>50% fill factor) array
- Optimisation work still ongoing for the outer (0.5-5% fill factor) array

Water Cherenkov clearly favoured on cost/performance grounds

80% FF, 80,000 m²

Data Analysis

- Arrival time and number of photoelectrons at each tank/layer \rightarrow
 - Direction reconstruction (PDF → ML fit), Core+Energy reconstruction (PDF→ML fit), Background rejection (Machine Learning, muon tagging+++)

Expected Science Performance

- Strong complementary at CTAO South
 - SWGO: High duty cycle & no trigger, UHE sensitivity, CTA: low E and resolution

SWGO Science

Baseline Array Layout

Three zones:

- Inner array:
 - o FF=65%, R= 156 m, 2587 tanks
- Outer array:
 - \circ FF= 4%, R= 400 m, 792 tanks
 - o FF= 1.6%, R= 560 m, 384 tanks

Inner Array Baseline Design

- Steel tanks assembled on site
 - 5.2 m Ø, 4.1m height
- Double-PMT unit in each detector
 - 10-inch PMTs
- Signals collected at Field Nodes
 - Serve 55 WCDs each, 250 MS/s digitisation

Inner Array Baseline Design

- Custom LDPE Bladders inside each steel tank
- Double-layered detectors
 - Separated by membrane
- Lower chamber is for background rejection
 → muon tagging
 - Reflective (Tykev) inner lining

Inflated with air to check for light leaks

Prototyping work

Low Altitude Test Sites: MPIK

Scintillator based muontaggers in a trench under the tank

Also in Brazil, Italy, USA

Outer array studies

- O Large dual layer tanks as for the inner array is one option, but also considering
 - → Smaller tanks as potentially more cost-effective for low fill factor (1-4%)

Potentially rotomolded (plastic) rather than steel

→ Single layer with multiple 3" PMT module

Heritage from KM3Net, Hyper-K, ++

First step on-site: the Pathfinder

SWGO Stages

OBeyond the pathfinder:

- → SWGO-A 385 WCDs in inner array
- → Outer WCD engineering array ~50 tanks
- → 800 radio antennae array (SWGO-TURBO)
- → Construction to full scale as funding allows

19

Summary

- SWGO brings the successful wide-field gamma-ray approach to a new hemisphere – the first major instrument of this type in the south
 - → Targeting inner galaxy, galactic centre, dark matter, GRBs, PeV sources, +++
 - → Strongly complementary to neighbouring CTAO South
 - → See science case white paper for details: https://arxiv.org/abs/2506.01786
- Now approaching construction
 - → Pathfinder at Pampa La Bola completed 2026
 - → SWGO-A construction from 2027 with NSF support
 - Sensitivity >HAWC in a new hemisphere

Thank you!

ALPACA

- Bolivia, 4750 m a.s.l.
- Fill factor 4% MDs, 0.5% scintillators \rightarrow area 0.08 km²
- ALPAQUITO: $\frac{1}{4}$ of ALPACA \rightarrow now complete except for muon det.

WCD response

- 1-2 GeV vertical muons
- Response uniformity:

UHE Extension in a Lake under study

- A multi-km² array as a possible future extension enhancing UHE capabilities
- One option is lake-based, in addition to main site
- R&D effort within SWGO over the years: prototyping, tests with waves in France, at a pond in LHAASO site
- Cost benefit comparison to be done cf extending at Pampa La Bola

Multi-messenger astronomy with SWGO+

Cosmic Rays

- Composition and hadronic interaction models
- Nearby extragalactic accelerators (GZK)

Gravitational Waves

Neutrinos

- Opiffuse Galactic emission
- PeV+ hadron accelerators

Electronics

