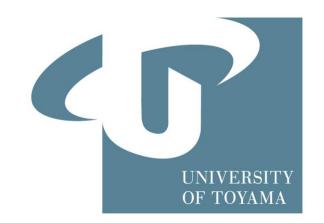
Solar neutrino oscillation results and future prospect

18th, September 2025


II EU Workshop on Water Cherenkov Experiments

for Precision Physics

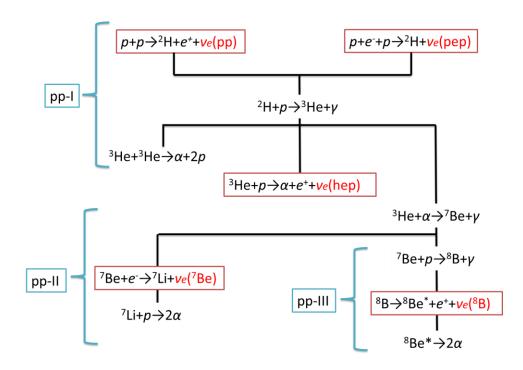
@Jagiellonian University, Poland

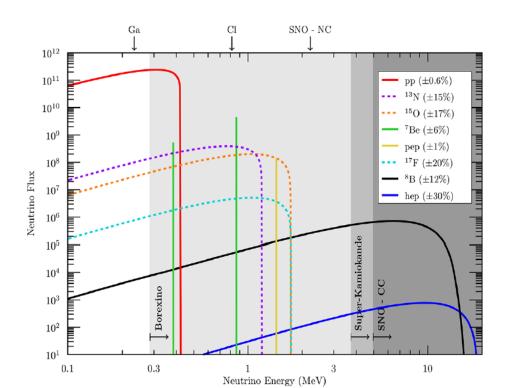
Yuuki Nakano (University of Toyama)

(ynakano@sci.u-toyama.ac.jp)

Contents

- Introduction
 - Solar neutrinos
 - History of solar neutrinos with Water Cherenkov detectors
- Solar neutrino results by Super-Kamiokande
 - Flux measurement including periodic signal searches
 - Day/night flux asymmetry
 - Recoil electron energy spectrum
 - Oscillation parameters
- Future prospect
 - Solar neutrinos to see through the structure of the Sun
- Summary


Solar neutrinos

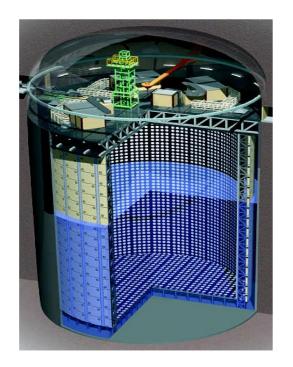

■ Production of solar neutrino

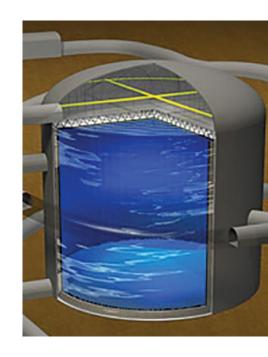
- Solar neutrinos are produced via nuclear fusions in the core.

$$4p \to \alpha + 2e^+ + 2\nu_e + 26.7 \text{MeV} - E_{\nu}$$

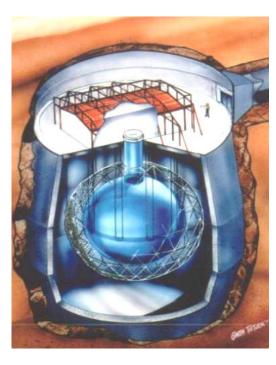
- Several processes produce electron-neutrino (ν_e).
 - → pp, pep, ⁷Be, ⁸B, hep and CNO
- Standard solar model (SSM) predicts their fluxes.

Water Cherenkov detectors


as solar neutrino detector


Kamiokande

Super- Kamiokande Hyper- Kamiokande


\$15600 \$19000

Phys. Rev. D 38, 448 (1998)

SNO

Phys. Rev. C 75, 045502 (2007)

H₂O

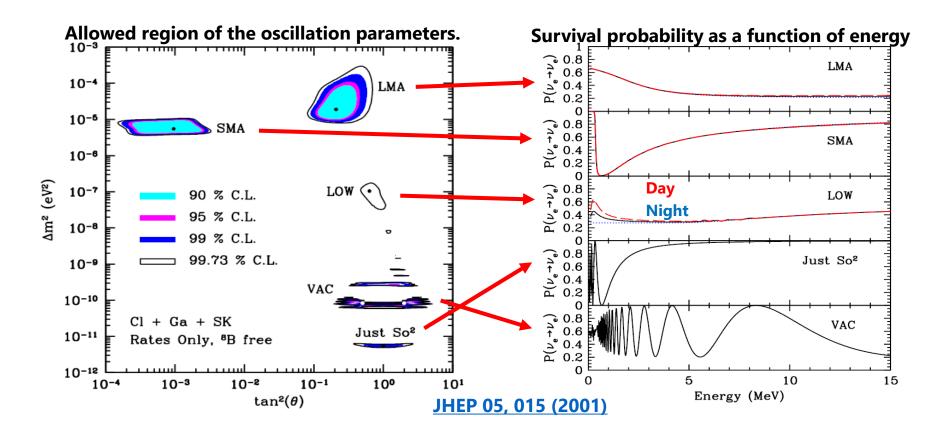
 D_2O

Solar neutrino interactions in Water

■ Reaction channels

- Three reactions (CC/NC/ES) are used in the water Cherenkov detector.

Channel	Experiment	Reaction	Energy Threshold	Comment
Charged current (CC)	SNO	$egin{array}{c} oldsymbol{ u}_e + d \ ightarrow e^- + p + p \end{array}$	1.4 MeV	Sensitive only to v_e \rightarrow pure v_e energy spectrum
Neutral current (NC)	SNO	$egin{array}{c} u_X + d \\ o u_X + p + n onumber \end{array}$	2.2 MeV	Equally sensitive to all flavor but only to ⁸ B v → Total ⁸ B neutrino flux
Elastic scattering (ES)	SK & SNO	$ u_X + e^- $ $ \rightarrow \nu_X + e^- $		Sensitive to all flavor Small contribution of $\nu_{\mu/\tau}$ Cross section: $\sigma_{\nu_e} = (6-7) \times \sigma_{\nu_{\mu/\tau}}$


Physics from reactions above

- The total v_X flux and the v_e flux would be separately determined.
- The CC/NC ratio gives the survival probability of solar neutrino.
- This provides independent test of the ν -oscillation hypothesis and the standard solar model (SSM).

Solar neutrino oscillation

Allowed oscillation parameters

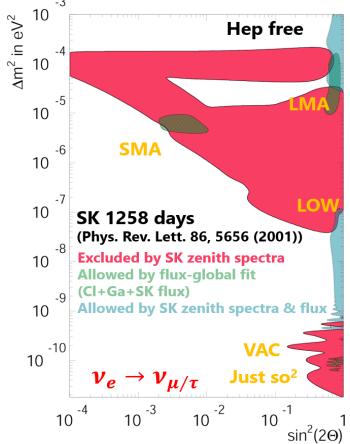
- Four possible oscillation solutions in 1990s.
- (1) LOW & LMA: No energy distortion, and small day/night flux difference.
- (2) SMA: Large energy distortion at low energy.
- (3) VAC: Energy distortion, and seasonal variation.
- → Energy spectrum, seasonal variation, and day-night flux asymmetry are key to determine the solution.

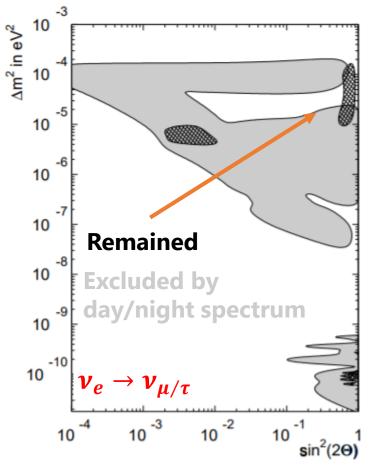
Phys. Rev. Lett. 82, 2430 (1999)

Kamiokande & SK-I

■ Kamiokande

- First real-time measurement of solar neutrino.
 - → Signals really come from the Sun by reconstructing the direction of scattered electrons.
- Observed rate over the SSM: 0.46 ± 0.13 (stat.) ±0.08 (syst.). Phys. Rev. Lett. 63, 16 (1989)
- → Confirmation of the solar neutrino problem.

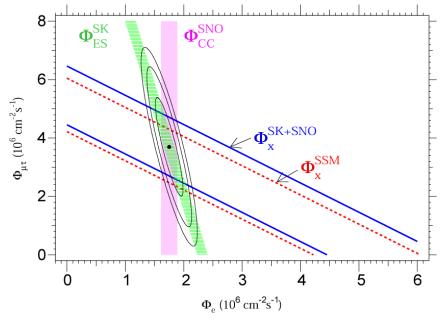

■ Super-Kamiokande


- Precise flux/energy spectrum measurement.

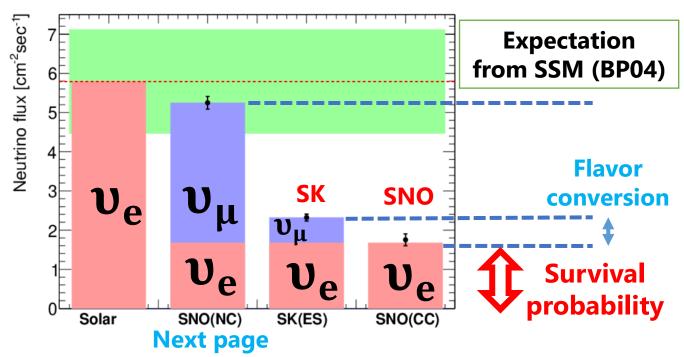
→ No distortion in the energy spectrum. Number of events / 1036-day Super-Kamiokande 504day 6.5-20Me Kam-III (1036 days) 0.8 Data/SSM_{BP92} More precise 0.3 0.2 Clear solar v signal **SK-I (504 days)** -0.5Energy(MeV) Phys. Rev. Lett. 77, 1683 (1996) Total Energy (MeV)

SK-I results

- **■** Era of precise measurement
- SK data confirmed:
 - 1) No energy distortion, no significant zenith dependence and small day/night flux asymmetry.
- 2) SK's zenith angle spectra excluded SMA, VAC and demonstrated no Just so².
- 3) SK's zenith spectra and flux measurement preferred LMA (higher Δm_{21}^2 region of large mixing).



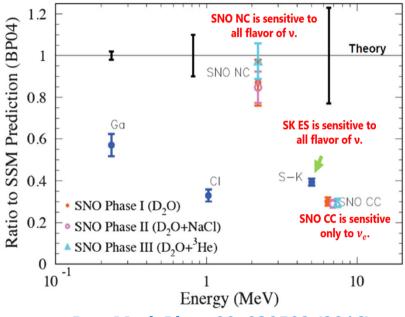
Flavor conversion


- SNO's flux measurements with SK
- The first evidence of the solar neutrino oscillation was obtained by comparing SK ES with SNO CC (non-electron ν component in ES).

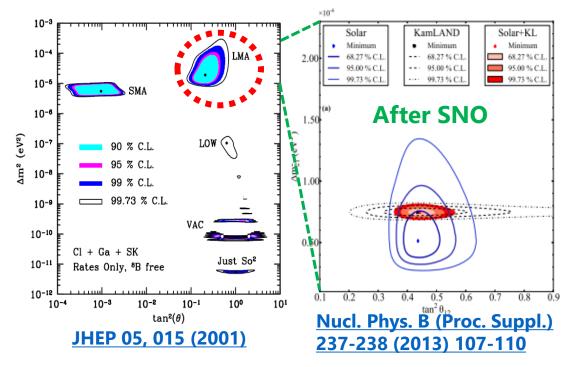
SNO CC	v_e	$1.75\pm0.07({ m stat})^{+0.12}_{-0.11}({ m syst.})\pm0.05({ m thor.}) imes10^6~{ m cm^{-2}sec^{-1}}$
SK ES	$ u_e + 0.15 \left(v_\mu + v_ au ight)$	$2.39 \pm 0.34 ({ m stat.})^{+0.15}_{-0.14} ({ m syst.}) imes 10^6~{ m cm^{-2}sec^{-1}}$
Difference		$(0.57\pm0.17) imes10^6~ ext{cm}^{ ext{-}2} ext{sec}^{ ext{-}1}$

- \rightarrow Clear evidence for non-zero ν_{μ}/ν_{τ} flux (flavor change, 3.3 σ).
- → Either of the results alone could not provided the evidence.

Phys. Rev. Lett. 87, 071301 (2001)



Solar neutrino oscillation with SNO


- Survival probability
- NC flux measurement is in good agreement with the prediction of the total ⁸B solar neutrino in SSM.

Measured total ⁸ B flux [×10 ⁶ cm ⁻² sec ⁻¹]	Prediction (BP04) [×10 ⁶ cm ⁻² sec ⁻¹]
$5.25 \pm 0.16^{+0.11}_{-0.13}$ Phys. Rev. C 88, 025501 (2013)	5.79 (1 ± 0.23) Phys. Rev. Lett. 92, 121301 (2004)

- The CC/NC ratio extracts the survival probability of solar electron neutrino: $0.317\pm0.016\pm0.009$.
 - \rightarrow Octant ambiguity of θ_{12} is solved (CC/NC<0.5 \rightarrow θ_{12} < 45°).

Rev. Mod. Phys. 88, 030502 (2016)

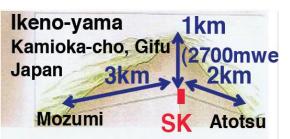
The latest results from SK

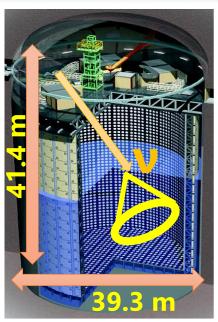
(pure water phase only)

Super-Kamiokande

0.01%Gd

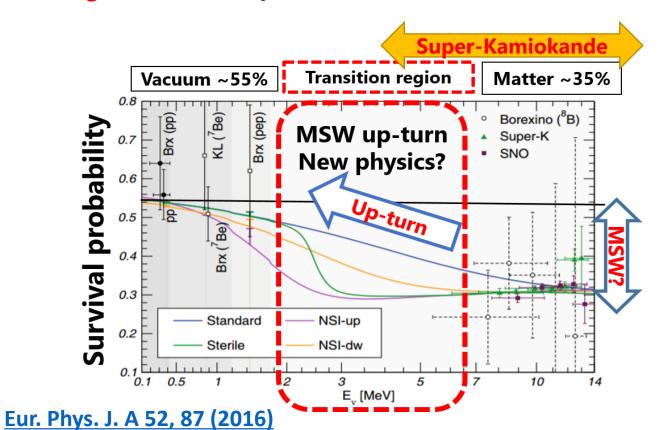
0.03%Gd

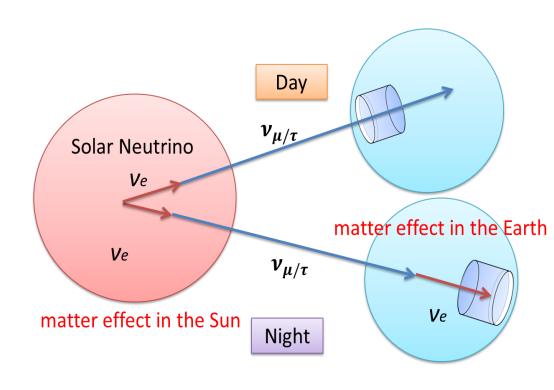

Detector


- Located at Kamioka Japan.
- 50 kton of ultra pure water tank until 2018 and Gd-loaded water after 2020.
 - 20-inch PMTs, 11,129 for ID (since SK-III).
 - 22.5 kton for analysis fiducial volume.
- Water Cherenkov light technique.

■ History of SK

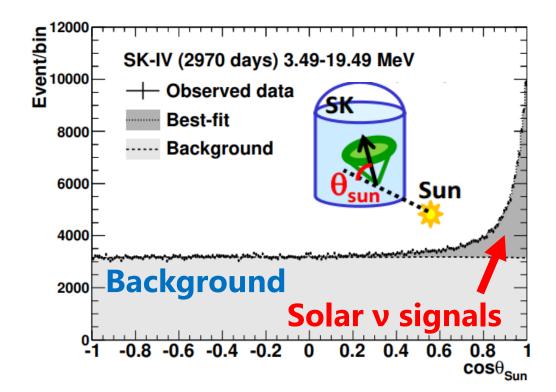
- Long term operation since 1996 (~30 years).
- Gd-loading after 2020 to start SK-Gd project [See Sekiya-san's and Mark's slides].
- 8-th phase started in 2024 summer after fixing the broken magnetic coils.

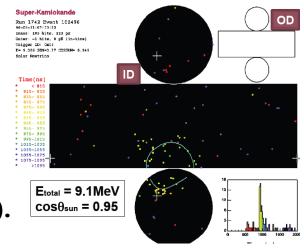


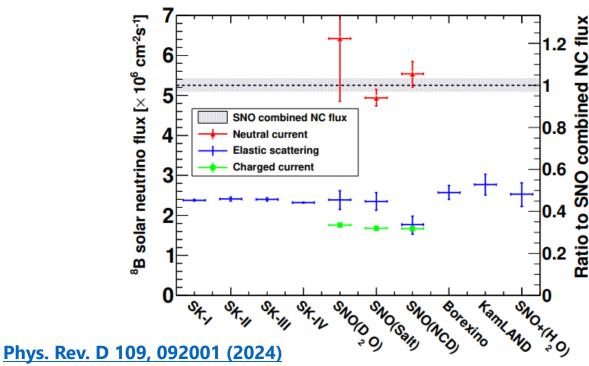


Motivation

- **■** Goal of solar neutrino measurement in SK
- (1) Test the transition of solar neutrino oscillation between vacuum and matter dominant regions.
 - → Lowering threshold & reducing radioactive background events to test MSW up-turn.
- (2) Day-night flux asymmetry
 - \rightarrow Regeneration of v_e due to the Earth's matter effect is expected.

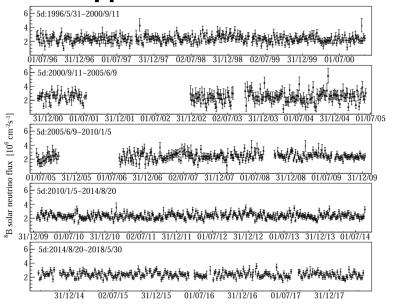


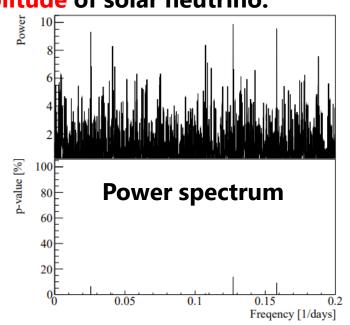



⁸B solar neutrino detection

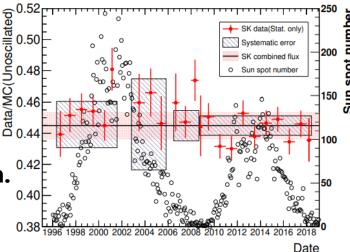
■ 8B solar neutrino signals

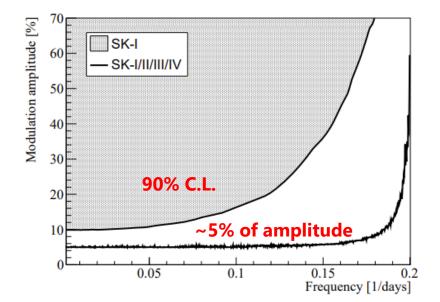
- Elastic scattering ($v_X + e^-
 ightarrow v_X + e^-$).
 - (1) Timing → Vertex position & real-time measurement
 - (2) Ring pattern → Direction of the incoming neutrino
 - (3) # of hit PMTs → Energy (~6 p.e./MeV)
- ~20 events/day in SK-IV (SK-I~IV 5805 days: More than 100k events).




Solar neutrino flux (interaction rate)

■ Modulation search


- Yearly measured flux is stable with no correlation with solar activity.
- Searched for periodic signal of ⁸B solar neutrinos in 5-days binned data.
 - → Lomb-Scargle method. Phys. Rev. Lett. 132, 241803 (2024)
- Found no significant periodic change of ⁸B solar neutrino flux
- except for the modulation due to the elliptic orbit of the Earth around the Sun.

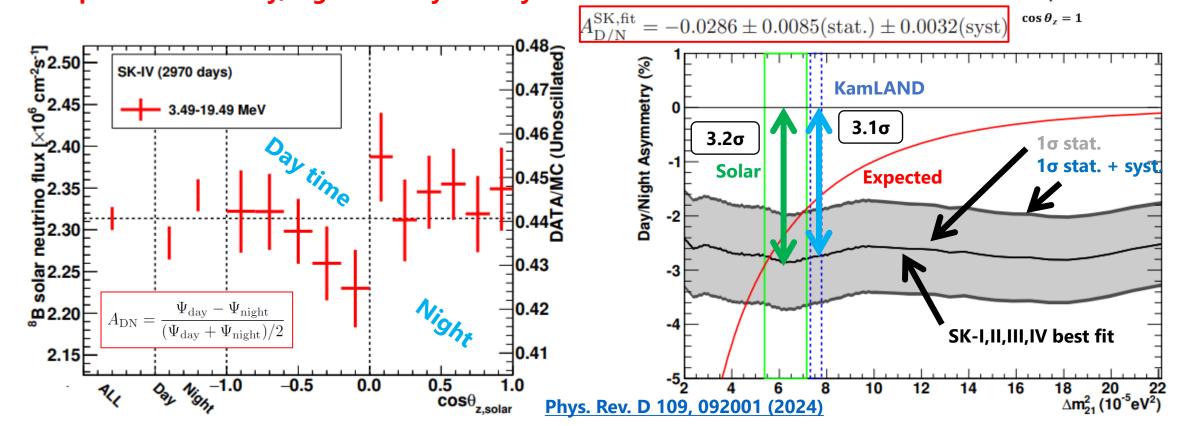

- Set the upper limits of modulation amplitude of solar neutrino.

Day/night flux asymmetry

 $\cos \theta_z = -1$

Earth

Solar


 $\cos \theta_z = 0$

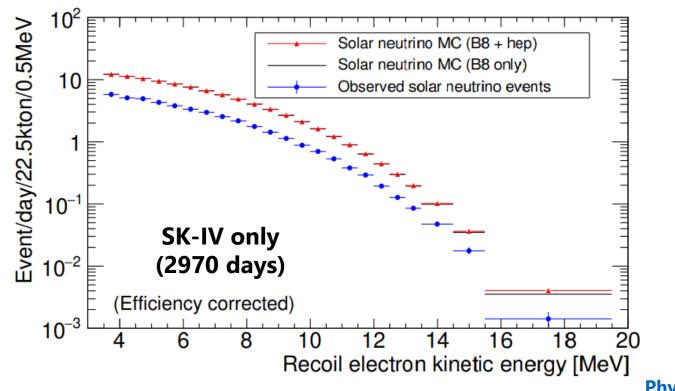
Night

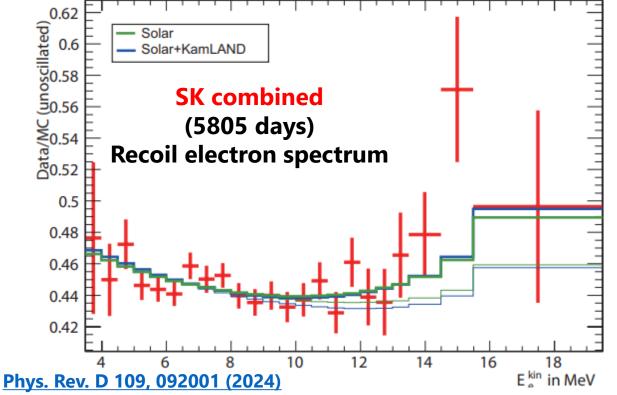
Amplitude fit

Because of re-generation of electron neutrino by matter effect in the Earth,
 the interaction rate of elastic scattering in night-time is higher than that in day-time.

- Considering the operation time, electron density in neutrino path, the amplitude of the day/night flux asymmetry is determined.

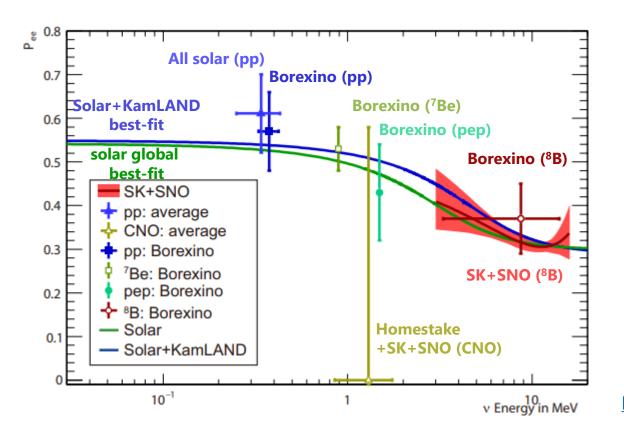
Recoil electron energy spectrum measurement

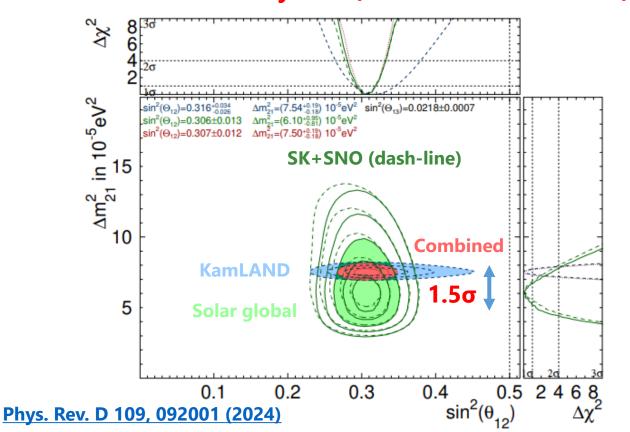

 $\sim 1.5 \times 10^{15} \text{ km}$


- **Energy spectrum vs. MSW predictions**
- To determine the oscillation parameters, spectrum measurement is important.

$$P_{\alpha \to \beta} = \sin^2 2\theta \sin^2 \left(1.27 \frac{\Delta m^2 L}{E} \right)$$

- Comparing the observed ⁸B solar neutrino interaction rate with the MC prediction (w/o oscillation).
- SK combined spectrum data slightly favors the MSW-upturn by 1.3σ for Solar

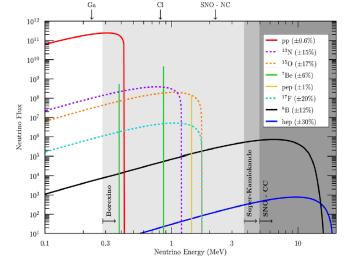

0.9σ for Solar+KamLAND.



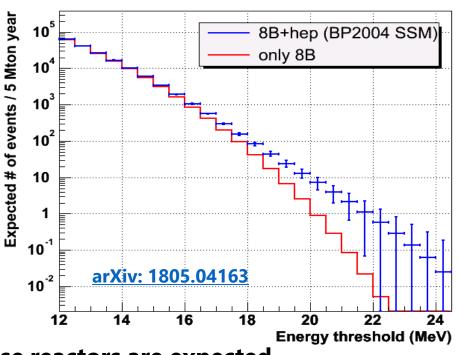
Survival probability and oscillation parameters

- **Comparison among solar neutrino experiments**
- Neutrino energy spectrum is de-convoluted from the recoil electron energy spectrum.
 - \rightarrow Extracting survival probability (P_{ee}) and giving the strongest constraint on P_{ee} shape.
- Oscillation parameters are determined precisely and compared with KamLAND (reactor).
 - \rightarrow Observes a tension in Δm_{21}^2 between solar global and KamLAND results by 1.5 σ (CPT violation? or BSM?).

Future prospect


What is next?

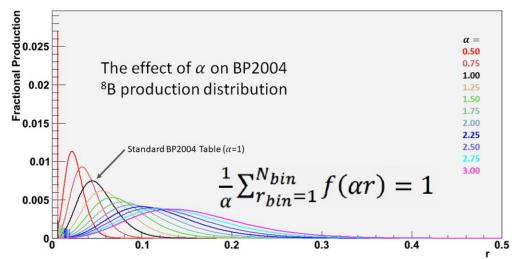
■ Remaining items for solar neutrinos

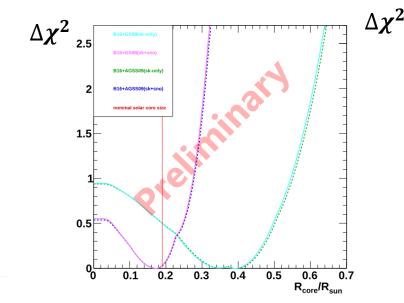

- 1) Hep neutrinos
 - Not yet detected.
 - → Expect to detect by the Hyper-Kamiokande by improving the systematic uncertainty of energy resolution.
- 2) pp, pep, and ⁷Be neutrinos
 - Future scintillator detectors, such as SNO+, JUNO, and dark matter detectors.
 - Full understanding of the MSW effect in the Sun.
- 3) Structure and motion of the Sun
 - See next pages.

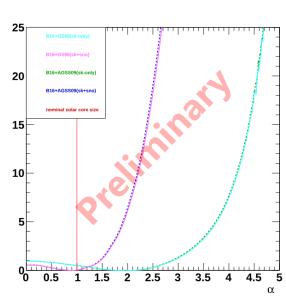
4) CPT violation test

- After loading Gd in the SK detector, reactor neutrinos from Japanese reactors are expected.
- \rightarrow SK also measures ϑ_{12} and Δm_{21}^2 of both neutrino and anti-neutrino using the single detector.

p. 20




Neutrinos to set through the Sun structure


■ Size of solar core

Phys. Rev. Lett. 117, 211101 (2016)

- Survival probability changes depending on the path from the production site to the Earth. <u>arXiv: 2504.10583</u>
- Keep the standard 8B solar neutrino flux by changing the location of production (introducing scale factor α).
 - → First constraint on the size of solar core.

■ Solar *g*-mode oscillation

- Not yet detected by optical light at the surface of the Sun (while 5-minutes p-mode was detected).
- Propagating in the central region of the Sun (1-2 hours) and results in the change of electron density.
- May affect neutrino fluxes depending on its amplitude [theoretical study in preparation].
- SNO experiment searched for such periodic change, but no significant signal was observed.

 So, Super-K and Hyper-K can search for such periodic change in ⁸B solar neutrinos. Astrophys. J. 710, 540 (2010)

Summary

- History with Water Cherenkov detectors
 - Significantly contributed to understand "flavor conversion" of solar neutrinos.
- Solar neutrino results by Super-Kamiokande
 - Precise measurement of flux, spectrum, oscillation parameters.
 - About 3% of day/night flux asymmetry.
 - Favors the MSW upturn.
 - Mixing angle is consistent with anti-electron neutrino measurement by KamLAND but has a tension by 1.5σ on the mass difference.
- Future prospect
 - Further studies are required to understand:
 - Hep neutrinos, the MSW effect with scintillation detectors.
 - CPT violation test by the single neutrino detector.
 - Determination of the size of solar core.
 - Searches for possible periodic fluctuation due to g-mode oscillations.

Back up slides