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Neutrino Oscillations

𝑃𝛼→𝛽 𝐿 = 𝑈𝑒−𝑖𝐻𝑳𝑈†
𝛽𝛼
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where 𝑐𝑖𝑗 = 𝑐𝑜𝑠 𝜃𝑖𝑗 and 𝑠𝑖𝑗 = 𝑠𝑖𝑛 𝜃𝑖𝑗

Probability of oscillation:

Hamiltonian:

PMNS Mixing Matrix:

𝐿 ≈ 20 𝑘𝑚 for down-going
𝐿 ≈ 12700 𝑘𝑚 for up-going

Measurement Parameters 3
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Up-Down Asymmetry

Because of these oscillations:
• A clear disappearance of muon neutrinos is

expected for Earth crossing (i.e. long) trajectories
• Down-going neutrinos are virtually unoscillated
• Only small effect on electron neutrinos (θ1₃

small)

→With limited resolution, expect a large 
up-down asymmetry for muon neutrinos, 
but not for electron neutrinos
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Discovery at 
Super-K

Takaaki Kajita, for the 
Kamiokande and Super-

Kamiokande collaborations, 
talk pre sented at the 18th 

International Conference in 
Neutrino Physics and 

Astrophysics (Neutrino ’98)
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Super-K First Results

Atmospheric neutrinos
are most sensitive to:

• Δ𝑚31
2

• sin2𝜃23

• Clear effect of
oscillations, large 
(maximal) mixing
angle, significantly
different from zero

• Constraints on Δm²₃₁ 
is relatively weak

(* converted from 2-flavour osc) 8



From 1998 to 2025

What happened since the landmark discovery of oscillations in Super-K?

→Collect more data
→ Improve the detector, the calibration, and the analysis!

Discovery 
mode

Precision 
physics
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Newest Analysis

• Increased fiducial Volume & Lifetime (SK I–V)
→ from ~4k in 1998 to now ~66k neutrino events

• Detector upgrades for SK IV-V
→Higher efficiency in detecting decay electrons
→Capability to tag neutron captures on hydrogen

• Nu-nubar separation techniques

• Large suite of systematic uncertainties
• from originally 8 → 193 parameters in fit
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New Event Classes

1998: (8 classes)

Now: (29 classes)
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3-flavour Oscillations & Matter Effects

Up-going
(Earth crossing)

Down-going

First Oscillation
Maximum (~25 GeV)

Matter Effects

Core-Mantle 
Boundary
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Super-K Latest Results
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IceCube

Similar historic
progression for
IceCube / 
DeepCore

The first result was 
published in 2013
after seeing a 
„hole in the sky“
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Newest IceCube Results

New result from 2025 with 11 years of DC data (First presented two
weeks ago @ NuFact!!)
• This represents the ~6th iteration of oscillation results for IceCube

(2013 – 2015 – 2018/2019 – 2023 - 2024 - 2025)

Changes since 2013:
• Much larger sample: 719 neutrino events→ > 100k events
• From 7 systematics→ 20 systematics (>40 systematics checked)
• Simple reconstruction→GNN-based ML reconstruction
• Improved calibration, simulation, ice modelling, etc.
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Newest IceCube Results
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Meanwhile in the Mediterranean…

ANTARES has put out 
oscillation measurements
in 2012 and in 2018

• Limited sensitivity
because first oscillation
peak is right at the energy
threshold of the detector

→ORCA, however, is
optimized for oscillations
(see next slide)

17



ORCA First Results

• First ORCA results based
on a six-string detector
configuration from 2024

• Based on 510 days / 433 
kton-year, and updated
already to 715 kton-year

• 13 systematics in the fit

→Much more is expected to
come after these initial results
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Global Landscape

Precision in oscillation parameters is at the same level as T2K and NOvA!
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Neutrino Mass Ordering
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Neutrino Mass Ordering (NMO)

The Question: Is Δ𝑚31
2 > 0 („normal“) or Δ𝑚31

2 < 0 („inverted“) ?

Using neutrino oscillations, NMO can be measured in two ways:

• Relative phase between fast (Δm²₃₁) and slow (Δm²₂₁) oscillations:
→ JUNO

• Via matter effects (see next slide):
→LBL (T2K, NOvA, DUNE, …): separate nu and nubar modes , but degeneracy with CP 

phase , low-statistics

→Atmospheric Neutrinos: large baselines/matter effects , no clean nu-nubar
separation , high statistics

21
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Current NMO results

pIO = 0.0081
PNO = 0.905
CLs of 0.085

pIO = 0.0091
PNO = 0.88
CLs of 0.076

pIO = 0.25
PNO = 0.65
CLs of 0.71

(*) CLs = p0/(1-p1)

Super-K I – V

Observed p-value in Super-K and IceCube is more significant than expected.
Using CLs to somewhat account for this:
→ very slight preference for NO over IO, but nothing yet conclusive 23



Beyond Standard Oscillations
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PMNS unitarity studies

A test for the unitarity conditions, i.e. whether basic
assumptions hold / probabilities are conserved

For example, additional right-handed neutrinos could
break this unitarity
→ The 3x3 PMNS matrix would only be a sub-matrix 𝑵 of a 
larger Unitary matrix

Studies had been performed based on reactor, solar, and 
accelerator neutrinos, but typically omitted atmospheric
neutrinos
→But atmospheric neutrinos offer a unique opportunity

to probe the 𝜈𝜏 sector
→since 𝜈𝜏 CC interactions only accessible for E > 3.5 GeV

25
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Option 1: Nutau Normalization

Introducing a parameter to break the unitarity of the mixing
→Scale the 𝜈𝜏 appearance signal with a „𝜈𝜏 Normalization“ parameter

rel. to the 𝜈𝜇 disappearance
• 𝜈𝜏 Normalization = 1 → Unitarity
• 𝜈𝜏 Normalization = 0 → Absence of 𝜈𝜏
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Option 2: PMNS Perturbation

Assume a non-unitry mixing matrix 𝑁 in place of 𝑈
How much can the PMNS Matrix be perturbed with non-unitarity?
→Multiplication of U by a lower-triangular matrix:

First ORCA6 results:

*

(*) derived from
„multiple sterile 
neutrino
analysis“
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Option 3: Arbitrary Mixing Matrix

• Fitting an arbitrary 3x3 𝑁
mixing matrix (agnostic
case), or a 3x3 submatrix 𝑁
of a larger unitary matrix

• Fit including DayaBay, 
KamLAND, and IceCube

• Atmospheric neutrinos
relevant in the 𝜈𝜇 𝜈𝜏 sector

• Everything compatible with
unitary mixing
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More BSM physics

In WCDs, we have a wide range of model-
dependent BSM searches based on atm. 
Neutrinos (incomplete list):

• 3+1 eV-scale sterile neutrinos
→MSW resonance at TeV energies

• Non-standard interactions (NSIs)
→ Altered matter effects

• Lorentz Invariance Violation
→ Spectral Distortion, e.g. depending on angle

• Quantum Decoherence
→Damping of oscillations

• Extra Dimensions
→Multiple MSW resonances from Kaluza-Klein 
excitations

LIV

Steriles:

NSIs:

Decoherence:
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What does the Future Hold?

New / Upgraded Detectors:
• Super-K Gadolinium / Hyper-K
• IceCube Upgrade
• Full KM3NeT ORCA

Joint Analyses:
• Super-K + T2K joint fit (2025!)
• ORCA + IceCube-Upgrade joint fit 

(active working group)
• Global fits

30

Exciting new results / 
new precision era 
projected!

Huge benefits from 
combining data!



Conclusions

• Atmospheric neutrinos have been a main driver in oscillation measurements
since right from the beginning

• Analyses were refined over many years and iterations, and large 
datasets collected

• Today, the latest results from WCDs are among the
most precise

• Offers unique opportunities to measure:
• Neutrino Mass Ordering via Matter Effects
• Oscillation into tau sector (→ non-unitarity)
• Rich program of BSM physics

• Exciting future ahead with ongoing
detector upgrades and new
experiments being built
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References Super-K

Based on Super-K I-V:
• Atmospheric neutrino oscillation analysis with neutron tagging 

and an expanded fiducial volume in Super-Kamiokande I–V
Based on Super-K IV:
• First Joint Oscillation Analysis of Super-Kamiokande Atmospheric
Based on Super-K I-IV:
• Limits on sterile neutrino mixing using atmospheric neutrinos in 

Super-Kamiokande
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References IceCube

Based on 9.3 years (previous result):
• Measurement of atmospheric neutrino oscillation parameters 

using convolutional neural networks with 9.3 years of data in 
IceCube DeepCore

Based on 3 years:
• Constraints on non-unitary neutrino mixing in light of atmospheric 

and reactor neutrino data
• Measurement of Atmospheric Tau Neutrino Appearance with 

IceCube DeepCore
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References KM3NeT

Based on ORCA6 433 kt-yr:
• Measurement of neutrino oscillation parameters with the first six 

detection units of KM3NeT/ORCA
• Study of tau neutrinos and non-unitary neutrino mixing with the first six 

detection units of KM3NeT/ORCA
Based on ORCA 715 kt-yr
• Updated measurement of atmospheric neutrino oscillation parameters 

with KM3NeT/ORCA

(ANTARES 10 year: Measuring the atmospheric neutrino oscillation 
parameters and constraining the 3+1 neutrino model with ten years of 
ANTARES data)
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