Results from Long-baseline Neutrino Oscillation Experiments

Workshop on Water Cherenkov Experiments for Precision Physics Jagellonian University, Kraków, Poland

Tomáš Nosek

Institute of Particle and Nuclear Physics, Charles University

September 18, 2025

Outline

- I Motivation for long-baseline (LBL) neutrino oscillation experiments
- II Neutrino beams
- III LBL concept
- IV Recent LBL experiments
 - a NOvA results (2024)
 - b T2K results (2023)
 - c T2K+NOvA results (2024 based on 2020)

Motivation for LBL Experiments

Neutrino (lepton) mixing in 3ν -paradigm

Neutrino (lepton) mixing in 3ν -paradigm

Where is the first oscillation maximum for Δm_{32}^2 ?

Hundreds of kilometers away with \sim GeV energies

Neutrino Beams

Neutrino beam

• Neutrinos come from decays of secondary π and K produced in collisions of high-energy protons with a target (graphite)

$$\pi^{\pm}, K^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu}$$

• Switching polarity of the focusing horns to select oppositely charged particles means effectively switching between ν and $\bar{\nu}$ dominated beams

Neutrino beam energy spectrum

- ullet The u source is not point-like, at least from the perspective of the near detectors.
- \bullet There is also extra contamination from K and secondary μ decays.

Why use neutrino beams?

- Dominant direction, not isotropic like natural neutrino sources
- Precise timing helps with backgrounds
- Multi-level monitoring via beam monitors and near detectors
- Can be tuned to the desired neutrino energy
- Beam intensity is a matter of technological advancement, not natural occurrence

CONS: It is sort of expensive

LBL Concept

Overview

- Find a lab to provide neutrino beam
- Build a huge detector about hundreds of kilometers away, while a smaller one nearby
- Shoot neutrinos, see what happens

NOVA Far Detector (Ash River, MN) MINOS Far Detector (Soudan, MN)

Disappearance oscillation probabilities

Leading order $\sin^2 2\theta_{23}$ and Δm_{32}^2

$$P(\nu_{\mu}
ightarrow \nu_{\mu}) pprox 1 - \sin^2 2 heta_{23} \cdot \sin^2 \left(rac{\Delta m_{32}^2 L}{4E}
ight)$$

 $\sin^2 2\theta_{23}$:

mixing angles rule the oscillation amplitude

 Δm_{32}^2 :

squared mass-splittings rule the oscillation frequency

Max $\sin^2 2\theta_{23} = 1$ corresponds to max mixing of $\theta_{23} = 45^\circ$

Appearance oscillation probabilities

Leading order $\sin^2 \theta_{23}$, $\sin^2 2\theta_{13}$ and Δm_{32}^2 in vacuum

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23} \cdot \sin^{2}2\theta_{13} \cdot \sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E}\right)$$

- + δ_{CP} dependent terms violating CP
- + δ_{CP} dependent terms conserving CP
- + other terms

$$\delta_{\it CP}=\pi/2$$
 : less $\nu_{\mu}
ightarrow \nu_{\it e}$, more $\bar{\nu}_{\mu}
ightarrow \bar{\nu}_{\it e}$ $\delta_{\it CP}=-\pi/2$: more $\nu_{\mu}
ightarrow \nu_{\it e}$, less $\bar{\nu}_{\mu}
ightarrow \bar{\nu}_{\it e}$

Matter effects

 u_e coherent forward scattering on pseudo-free electrons of matter Modify $u_{\mu} \rightarrow
u_e$, depends on the sign of Δm_{32}^2 (mass ordering)

LBL experiments with $L/E \sim 10^{2-3}$ km/GeV are sensitive to

$\delta_{\mathrm{CP}},~J_{\mathrm{CP}}$

Is there significant CP violation in the lepton sector?

$$J_{\rm CP} = s_{13}c_{13}^2s_{12}c_{12}s_{23}c_{23}\sin\delta_{\rm CP}$$

... also θ_{13}

Recent LBL experiments

LBL generations

Neutrino energies

• Both experiments have their detectors located slightly off-axis (2.5° T2K, 0.84° NOvA) to get narrow and highly pure $\nu_\mu/\bar{\nu}_\mu$ spectra

NOvA peak at ~ 2 GeV T2K peak at ~ 0.6 GeV

ullet Different u energy corresponds to different phenomenological types of interactions

NOvA:

transition region, mixture of QE, 2p2h, RES π production and DIS

T2K:

mostly QE with 2p2h and RES, DIS in tail

Neutrino flux

Baselines

NOvA: 810 km T2K: 295 km

MATTER EFFECTS

- Higher energy and longer baseline enhances the mass ordering dependent matter effects, which are degenerate with CP violation effects
- Lower energy and shorter baseline reduces the matter effects to get less degenerate CPV values of δ_{CP}

The impact on $P(\nu_{\mu} \to \nu_{e})$ and $P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})$ differs for each experiment

Lifting degeneracies

 Different energies and baselines give different oscillation probabilities and parameter sensitivity

NOvA:

- Better mass ordering sensitivity
- Degenerate for around $\delta_{CP} = \pi/2$ and $-\pi/2$ (CPV)

T2K:

- \circ Better δ_{CP} sensitivity
- Degenerate for around $\delta_{CP} = 0$ and π (no-CPV)
- Joint analysis probes both spaces lifting degeneracies of individual experiments

Reactor constraints

Recall the oscillation probabilities:

Some LBL $heta_{23}$ vs. $heta_{13}$ ambiguity $P(
u_{\mu} o
u_{e}) \propto \sin^{2} heta_{23}\sin^{2}2 heta_{13}$

$$1-P(ar{
u}_e
ightarrowar{
u}_e)\propto\sin^2 heta_{13}$$

Recent 2D constraints from Daya Bay PRL 130 161802 also from RENO PRD 111 112006

$$\Delta m_{
m ee}^2 \simeq \cos^2 heta_{12} |\Delta m_{31}^2| + \sin^2 heta_{12} |\Delta m_{32}^2|$$

Notables for 2024 (since 2020)

- Recently out arXiv:2509.04361
- 26.6e20 POT ν (+96%), 12.5e20 POT $\bar{\nu}$
- New low energy ν_e -like sample
- CNN-based cosmic rejection

Basic analysis strategy

- Exploit similarity of the Far and Near detectors through F/N technique to cancel out interactions and flux systematic uncertainties
- Near detector data-driven prediction of signal and ν_e beam bkg.
- Energy reconstructed from μ path, otherwise calorimetrically, ν_{μ} samples of different E_{had} fractions
- ullet CNN (Neural Network) for identification, u_e samples of low and high PID
- Peripheral ν_e sample of not-fully-contained ν_e -like events

Notable preference for NO, more pronounced with Daya Bay (reactor) constraints on $\sin^2 2\theta_{13}$ (1D constraint) and $\sin^2 2\theta_{13} + \Delta m_{ee}^2$ (2D constraint) from PRL 130 161802 BF = Bayes Factor

- The sensitivity to $J_{\rm CP}$ (sin $\delta_{\rm CP}$) is highly correlated with other oscillation parameters (namely θ_{23})
- ullet Degenerate effects of matter and CPV $\sin\delta_{\mathrm{CP}}$
- ullet Weak constraints on δ_{CP}

- The sensitivity to $J_{\rm CP}$ (sin $\delta_{\rm CP}$) is highly correlated with other oscillation parameters (namely θ_{23})
- $\bullet~$ Degenerate effects of matter and CPV sin δ_{CP}
- Weak constraints on δ_{CP}

Basic analysis strategy

- CCQE and CC1 π^+ ν -like SK samples, energy from kinematics
- Identification based on Cherenkov rings shape e-like vs. μ-like
- Numerous ND280 ν_{μ} and $\bar{\nu}_{\mu}$ CC0 π and bkg. samples by FS particle multiplicity to constrain interaction models (NEUT generator)
- Consequential (ND280→SK) or simultaneous (ND280+SK) fitting

Notable updates for 2023

- Minor update on 2022 analysis version with extra SK μ -like sample recently on arXiv:2506.05889
- \bullet 21.4e20 POT ν (+9% on EPJC 83 782), 16.3e20 POT $\bar{\nu}$
- Improved selection of Michel es (needed after Gd loading, applied to all data)
- Improved SK detector systematics model further reducing the uncertainties

beam	<i>e</i> -like	μ -like
ν	1Ring-e+0Me	$1Ring\text{-}\mu\text{+}0\text{-}1Me$
	1Ring-e+1Me	Multi-Ring- μ +1-2Me
$\bar{\nu}$	1Ring-e+0Me	1 Ring- μ +0- 1 M e

- The only (single-)experiment capable of constructing the 3σ CIs on $\delta_{\rm CP}$
- CP-conserving values excluded at >90% CL (not confirmed in 2 of 18 studies of fake data sets)
- Best-fit $\delta_{\rm CP}$ very close to CPV maximal $-\pi/2$

Small preference for upper octant of θ_{23} , minor improvements in precision of Δm_{32}^2 , insignificant NO preference, overall consistent with previous analysi(e)s (for 10 years already)

- Full detailed likelihood functions for both experiments
- Full detailed energy reconstruction, detector effects, etc.
- Consistent statistical inference methods
- In-depth review of exp. analysis methods
- CON: Correlations in "non-transferable" interaction models

Notables from the joint analysis

- Based on 2020 analyses EPJC 83 782 (T2K) and PRD 106 032004 (NOvA)
- Combined at the level of likelihoods
- Still dominated by statistics
- Minimal correct analysis as correlations do not matter
- The data from both experiments is described well

- Neither ordering has a preference for δ_{CP} values around $+\pi/2$ (outside 3σ CI)
- Normal ordering allows for a broad range of δ_{CP}
- If inverted ordering, CPC δ_{CP} values outside 3σ CIs
- Robust under change of δ_{CP} prior

- Neither ordering has a preference for δ_{CP} values around $+\pi/2$ (outside 3σ CI)
- Normal ordering allows for a broad range of δ_{CP}
- If inverted ordering, CPC δ_{CP} values outside 3σ CIs
- Robust under change of δ_{CP} prior

- Modest preference for $\sin^2 \theta_{23} > 0.5$, Bayes factor 3.6
- $\bullet\,$ Very weak preference for IO, Bayes factor 1.3
- Posterior probability 57% for $\Delta m_{32}^2 < 0$
- Posterior probability 43% for $\Delta m_{32}^2 > 0$
- Consistent with other measurements
- Smallest uncertainty in $\Delta m_{32}^2 < 2 \%$ (newest NOvA 2024 results competitive)

Marginalizing over $\Delta m_{32}^2 \leq 0$ separately leads to NO/10 "conditional" credible regions

$$\Delta m_{32}^2 |_{\text{IO}} = -2.48^{+0.03}_{-0.04} \times 10^{-3} \text{ eV}^2$$

 $\Delta m_{32}^2 |_{\text{NO}} = 2.43^{+0.04}_{-0.03} \times 10^{-3} \text{ eV}^2$

Pre-Conclusion

Conclusions

Conclusions

- LBL neutrino oscillation experiments are sensitive to CP violation, mass ordering and other important aspects of neutrino physics
 - \circ CP-conserving values of δ_{CP} outside 90% CL (T2K)
 - Notable synergy with reactor exps. on MO (NOvA)
 - \circ If IO, CP-conserving $\delta_{\rm CP}$ values outside 3σ CL (T2K+NOvA)
- Current LBL measurements of NOvA, T2K, and NOvA+T2K provide leading constraints on several neutrino oscillation parameters
- T2K and NOvA precision era has just begun
- Future next-generation "discovery machines" of Hyper-Kamiokande and DUNE will rely on T2K and NOvA experience in LBL programs to provide high-precision neutrino measurements and answer critical questions of neutrino physics

BACKUP

The "my-precious" channel $\nu_{\mu} \rightarrow \nu_{e}$

 $P(\nu_{\mu} \rightarrow \nu_e; L, E, A) \approx 4c_{13}^2 s_{13}^2 s_{23}^2 \sin^2 \Delta_{31}$ + $8c_{13}^2s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta_{CP}-s_{12}s_{13}s_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}$ $-8c_{13}^2c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta_{CP}\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}$ + $4s_{12}^2c_{13}^2\left(c_{12}^2c_{23}^2+s_{12}^2s_{23}^2s_{13}^2-2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta_{CP}\right)\sin^2\Delta_{21}$ $-\ 8c_{13}^2s_{13}^2s_{23}^2\frac{AL}{AF}\left(1-2s_{13}^2\right)\cos\Delta_{32}\sin\Delta_{31}+8c_{13}^2s_{13}^2s_{23}^2\frac{A}{\Delta\,m^2}\left(1-2s_{13}^2\right)\sin^2\Delta_{31}$

$$s_{ij} \equiv \sin heta_{ij}, c_{ij} \equiv \cos heta_{ij}$$
 $\Delta_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E_{
u}}$ $A(E_{
u}) \equiv 2\sqrt{2}G_{
m F}N_{
m e}E_{
u}, \quad ar{
u}: A
ightarrow -A, \delta_{
m CP}
ightarrow -\delta_{
m CP}$

Long-baseline acc.

dominant term

other CPC

CPV

solar CPC

matter

Atmospheric

Crucial $\sin^2 \theta_{13}$ from reactor $\bar{\nu}_e \to \bar{\nu}_e$ experiments

NOvA detectors

- Two functionally similar detectors 810 km apart Near (ND) and Far (FD)
- FD on the surface, ND about 100 m underground
- Consist of extruded plastic cells with alternating vertical and horizontal orientation for 3D reconstruction of neutrino interactions
- Filled with liquid scintillator, tracking calorimeter with 65% active mass (FD 14 kton, ND 0.3 kton)
- \bullet Energy estimation from μ range, EM and hadronic shower calorimetry

NOvA detectors

- Two functionally similar detectors 810 km apart Near (ND) and Far (FD)
- FD on the surface, ND about 100 m underground
- Consist of extruded plastic cells with alternating vertical and horizontal orientation for 3D reconstruction of neutrino interactions
- Filled with liquid scintillator, tracking calorimeter with 65% active mass (FD 14 kton, ND 0.3 kton)
- \bullet Energy estimation from μ range, EM and hadronic shower calorimetry

T2K detectors

ND280

- TPC tracker with excellent PID
- Plastic scintillator target (C) + water layers (O)
- MAGNETIZED to distinguish ν_{μ} and $\bar{\nu}_{\mu}$
- Selected neutrino events with reconstructed μ track and number of π : CC1 μ 0 π , CC1 μ 1 π , CC1 π

Super-Kamiokande

- 50kt water Cherenkov detector
- Excellent μ/e -like Cherenkov rings separation (ν_{μ} vs ν_{e} CC interactions)
- Reconstruction from lepton kinematics

NOvA analysis strategy

- ND sees the neutrino spectrum as a combination of neutrino flux from NuMI, CC cross sections, detector acceptance and selection efficiency
- The ND measured spectra are used to correct FD MC oscillated predictions using the Far/Near (F/N) transformation
- Due to functional similarity of both detectors, this procedure largely cancels detector correlated uncertainties (ν flux and cross sections)

NOvA analysis strategy

- ND sees the neutrino spectrum as a combination of neutrino flux from NuMI, CC cross sections, detector acceptance and selection efficiency
- The ND measured spectra are used to correct FD MC oscillated predictions using the Far/Near (F/N) transformation
- Due to functional similarity of both detectors, this procedure largely cancels detector correlated uncertainties (ν flux and cross sections)

T2K analysis strategy

- Fit to ND280 data move the model parameters from their -pre-fit values and also constrain them
- This data fit might be **sequential** (ND fit \rightarrow constrained model \rightarrow FD fit) or **simultaneous** (ND+FD data simultaneous fit)

NOvA vs T2K Comparison

Experiment	NOvA	T2K
Country Laboratory Started	USA Fermilab 2014	Japan KEK, J-PARC 2010
Baseline $ u$ energy peak Off angle	810 km 2 GeV 0.84° / 14.6 mrad	295 km 0.6 GeV 2.5° / 43.6 mrad
$ u$ Source $ u + \bar{\nu}$ POT 2020	120 GeV protons, max 760 kW $(1.36 + 1.25) \times 10^{21}$	30 GeV protons, max 515 kW $(1.97+1.63) imes 10^{21}$
Near Detector	NOvA ND liquid scintillator tracking calorimeter NO MAGNET	ND280 TPC trackers targets of pl. scintillator or water magnetized to distinguish $ u_{\mu}/\bar{\nu}_{\mu}$
Far Detector	NOvA FD 14 kt liquid scintillator tracking calorimeter	SuperK 50 (22.5) kt water Cherenkov 13k (11k) PMTs
u interactions QE, 2p2h, RES, DIS mix		Mostly QE, 2p2h and RES bkg
Near-to-far	Direct correction of FD MC based on the ND data (F/N trans.)	Fit to ND data which constrains the interaction and flux parameters
Energy estimator Lepton and hadronic calorimetry		Lepton kinematics (elastic)

T2K+NOvA models and systematics

Different energies

FILIX

What? When? How much? ... to correlate common physics parameters between the two experiments?

No significant

MODEL	Different external data tuningDifferent treatment in the analysis	\Rightarrow	correlations between the experiments
DETECTOR MODEL	 Different detector designs and technologies Different selections Inclusive vs exclusive outgoing π Different reconstruction techniques Calorimetry vs lepton kinematics 	\Rightarrow	No significant correlations between the experiments
CROSS- SECTION MODEL	 Expecting correlations from common physics Different interaction models and generators Optimized for different energies Systematics designed for individual models 	\Rightarrow	Investigate the impact of correlations in the joint analysis

and analysis approaches

T2K+NOvA checks on impact of correlations

Strategy

• Study parameters and their inter-experimental correlations with a significant impact on the parameters of interest δ_{CP} , $\sin^2\theta_{23}$, Δm_{32}^2

Fully correlating ν_{μ}/ν_{e} and $\bar{\nu}_{\mu}/\bar{\nu}_{e}$ cross-section uncertainties, treatment is identical (large δ_{CP} impact)

Otherwise, no direct mapping of the systematic parameters between the experiments

- Fabricated, simulated and studied a fully correlated bias for Δm_{32}^2 or $\sin^2 \theta_{23}$
- Impact of correlations merits further investigation for future analyses with increased statistics
- Given current (2020) statistics, the overall sensitivity gains from correctly correlating systematics would be small, while incorrectly correlating leads to bias

One example of a study to assess the importance of inter-experimental correlations

Goodness of fit, compatibility of datasets

Joint analysis uses data collected by each experiment until 2020

NOvA: 1.36
$$(\nu)$$
 + 1.25 $(\bar{\nu})$ ×10²¹ POT T2K: 1.97 (ν) + 1.63 $(\bar{\nu})$ ×10²¹ POT

- Using posterior predictive p-values (PPP) to assess the goodness of fit (good PPP is around 0.5)
- The data from both experiments is described well by the joint fit

Channel	NOvA	T2K	Total
$ u_{e}$	82	$94_{(u_e)} \ 14_{(u_e 1\pi)}$	190
$ar{ u}_e$	33	16	49
$ u_{\mu}$	211	318	529
$ar{ u}_{\mu}$	105	137	242

Goodness of fit, compatibility of datasets

• Joint analysis uses data collected by each experiment until 2020

NOvA: 1.36
$$(\nu)$$
 + 1.25 $(\bar{\nu})$ ×10²¹ POT T2K: 1.97 (ν) + 1.63 $(\bar{\nu})$ ×10²¹ POT

- Using posterior predictive p-values (PPP) to assess the goodness of fit (good PPP is around 0.5)
- The data from both experiments is described well by the joint fit

	P-value		
Channel	NOvA	T2K	Combined
$ u_e$	0.90	$0.19_{(\nu_e)} \ 0.79_{(\nu_e 1\pi)}$	0.62
$ar{ u}_e$	0.21	0.67	0.40
$ u_{\mu}$	0.68	0.48	0.62
$egin{array}{c} u_{\mu} \ ar{ u}_{\mu} \end{array}$	0.38	0.87	0.72
All	0.64	0.72	0.75

