Proton Decay

Hide-Kazu TANAKA (Kamioka Obs., ICRR, University of Tokyo)

II EU Workshop on Water Cherenkov Experiments for Precision Physics (WCD-2025), September 17-19, 2025

Proton decay?

- Proton decays: baryon number B and lepton number L are not conserved
 - ex. p→e+π⁰
- In the Standard Model, baryon number B and lepton number L are conserved
- → Observation of proton decay clear evidence of beyond the SM
- Proton decay requires a conversion of quark to lepton
- →Unification of quarks and leptons: justifies equality of electric charge between proton and electron
- Grand Unified Theory (GUT): unification of forces and particles (at 10¹⁵⁻¹⁶ GeV): baryon number is necessarily violated
 → proton decay

Proton decay rate

Life time of particle A

$$\tau = \frac{1}{\Gamma(A \to BC)} \propto \frac{M_X^4}{\alpha^2 m_A^5}$$

- GUT models predict interactions through new super-heavy gauge bosons, X, which can mediate proton decay
- Proton lifetime prediction depends on the choice of M_X, α and other parameters, operators — model dependence
 - ex. unification at $M_X \sim 10^{14}$, $\alpha \sim 1/40 \rightarrow \tau \sim 10^{30}$
- Search for proton decay constrain those parameters (even if non-observation)
- In GUTs, protons dominantly decay into e+π⁰ (in non-SUSY theories) or v̄K+ (in SUSY theories)

Theoretical predictions

- Numerous and various models continue to be proposed
- Proton lifetime predictions are uncertain by 2-3 or more orders of magnitude
- Predictions of τ/B ~ 10³⁰ ~ 10³⁷+ years

p→e+π0

Search for proton decay

- A large detector is fundamentally important for proton decay search, which contains a huge number of protons as a detector medium
 - A detector with a small number of protons take 10^{~30} years to observe one proton decay
- Super-Kamiokande, the current largest proton decay experiment, sets the most stringent limit on the proton lifetime, ex. p→e+π⁰, p→v̄K+
 - Super-K has ~10³⁴ protons in the detector (water)

Original figure by E. Kearns

Super-Kamiokande

- 42m (H) x 39m (D) large water
 Cherenkov detector filled with
 50 kton ultra-pure water
- Fiducial mass 27.2 kton
 - (conventional 22.5 kton)
 - ~10³⁴ protons in Super-K
 - Hydrogen (free proton) ~10³³
- Data taking from 1996 and ongoing now
- Excellent particle identification (μ and e)
 - Mis-PID rate <1% at ~1GeV
- Good energy resolution
 - ~3% at ~1GeV

Search for p→e+π⁰ in Super-K

- Positron and π⁰ run back-to-back
 - Momentum 459 MeV/c
- All particles in the final state are visible with Super-K
 - Able to reconstruct proton mass and momentum

Event selection:

- All particles are fully contained in FV
- 2 or 3 rings (two of them from π 0)
- All particles are e-like, w/o Michel-e
- $85 < M_{\pi 0} < 185 \text{ MeV/c}^2$
- $800 < M_p < 1050 \text{ MeV/c}^2$
- 100 < P_{tot} < 250 or P_{tot} < 100MeV/c
- Neutron-tagging (SK-IV~)
 - Further reduce bkg by ~50%

Search for p→e+π⁰ in Super-K

- Signal selection efficiency: ~40%
 - cf. ~80% for free proton decay
 - → Inefficiency due to "nuclear effect" (see next slides)
- Expected background in signal region (SK-I~IV):
 - Lower Ptot: 0.06 events ← free proton enriched signal region
 - Upper Ptot: 0.58 events
- No evidence of the proton decay with ~17y exposure
- $\tau/B(p \to e^+\pi^0) > 2.4 \times 10^{34} \text{ years at } 90\% \text{ C.L.}$

Nuclear modeling of proton decay signal

- One of major causes of signal inefficiency is due to final state interaction (FSI) of π inside the parent nucleus
 - ~50% of π⁰ are affected by interactions with nucleons in the parent nucleus (scattering, absorption, charge exchange)
- Bound proton influenced with Fermi motion, binding energy, correlation with other nucleons that also cause signal inefficiency
- An advantage of water Cherenkov detector is to have 'free protons'
 - cf. p→e+π⁰ signal selection efficiency: in oxygen: ~40%, in hydrogen: 80+%

Background in proton decay search

Background for proton decay search

- Sole background: atmospheric neutrinos
- Background fraction in p→e+π⁰ search
 - CC resonance, multi-π (DIS): ~70%
 - CC QE + secondary interaction producing π: ~20%
 - NC interactions: ~10%
- Neutrino interaction models have uncertainties
- → Background rate prediction confirmed with v beam data of K2K-1KT Cherenkov detector

Reducing background

- ~60% of atm-v bkg are accompanied with neutrons — neutrons captured by hydrogen (~200μs) & emit 2.2 MeV γ-ray (p+n→d+γ)
- Dead-time free electronics in SK-IV~ allows to identify the 2.2MeV γ-ray, 'neutron-tagging'
 - Tagging efficiency ~25%
- → Atmospheric v bkg further reduced by ~50% with neutron-tagging

Search for p→vK+ in Super-K

- Final state K+ has momentum of 340 MeV/c
 - Below Cherenkov threshold (560 MeV/c)
- Identify K+ by finding its decay products

$$K^+ \rightarrow \mu^+ \nu_\mu$$

(K+ leptonic decay)

Search Methods

- Nuclear de-exitation γ, μ, and decay e+
- Monochromatic µ from K+ decay

Search Method

 π + and two γ from π 0 decay (π + Č threshold 156MeV/c)

Search for p→vK+: K+ leptonic decay

- Proton decays in ¹6O → Excited nucleus (¹5N*) emits
 6.3 MeV γ-ray (~40% probability)
 - $^{16}O \rightarrow \bar{\nu}K^{+} ^{15}N + \gamma$, $K^{+} \rightarrow \mu + \nu$ (BR=65%), $\mu \rightarrow \nu e$
- γ, μ and Michel-e from μ-decay triple coincidence largely reduce the background
- Signal selection efficiency ~10%

Search for p→vK+: K+ hadronic decay

 $K+\to \pi^+\pi^0$: π^+ and π^0 run back-to-back with 205 MeV/c

Signal efficiency ~10%

- Found no evidence of p→vK+
- Lifetime limit combining all search methods:
 τ/Br > 8.2 × 10³³ years [preliminary]
 - at 90% C.L. with 365 kt·years (SK-I~IV)

Results of proton decay searches, so far

- Super-K sets
 most stringent
 lifetime limits for
 benchmark decay
 modes: p→e+π⁰
 and p→v̄K+
- Many other decay modes searched with Super-K

Results of nucleon decay searches, so far

- There are many other results for other modes and processes
 - e.g. 3-body, 4-body, dinucleon decays, etc.
- Unfortunately no signal, all limits, so far

Particle physics

Fundamental physics is frustrating physicists

The **Economist**

No GUTs, no glory

Jan 13th 2018

https://www.economist.com/news/science-and-technology/21734379-no-guts-no-glory-fundamental-physics-frustrating-physicists

Next generation nucleon decay detectors

Detectors just started operation and currently under construction

· JUNO

- Jiangmen Underground Neutrino Observatory in China
- Liquid scintillator: 20 kton
- Data taking started this August

DUNE

- Deep Underground Neutrino Experiment in the U.S.
- Liquid argon detector: ~40 kton
- Data taking starts in 2030

Hyper-Kamiokande

- Kamioka in Japan
- Water Cherenkov detector: 260 kton
- Data taking starts in 2028

JUNO: liquid scintillator

Chin. Phys. C 47, 113002 (2023)

- Overburden: 650m
- 20 kton of liquid scintillator
 - Number of protons: ~10³⁴
 (~10³³ free protons)
- 78% photo-coverage
 - 17,612 20" PMTs and 25,600 3" PMTs
- Very high energy resolution at 1 MeV
- Primary physic goal is determination of neutrino mass ordering using reactor neutrino
- Liquid scintillator filling has been completed and started data taking this August

JUNO: liquid scintillator

- All of the charged particles inside emit scintillation light
- Good at searching for p→vK+ by requiring the triple coincidence: signal efficiency 36.9%, 0.2 bkg (10 years)
 - Great suppression of bkg from atmv K production, major bkg is proton from CCQE (p mimics K)
- Reaches the sensitivity of 10³⁴
 years for p→vK+ in 10 years
 - Reach Super-K limit in a couple of years

DUNE: liquid argon TPC

- Overburden: 1,500m
- 40 kton of Liquid argon
 - Number of protons: ~10³⁴
- TPC gives 3D particle tracking with excellent resolutions for position and energy
- Primary physic goal is determination of neutrino CP and mass ordering using neutrino beam
- Detector construction on-going and start data taking in 2030

DUNE: liquid argon TPC

- All charged particles visible
- Good at searching for p→vK+
 - Particle type identified by the deposited energy over its track length (dE/dx).
- Atmospheric v are the main background source (K production)
 - Machine-learning technique separate signals & backgrounds
 - v-Ar interaction studies on-going
- Signal selection efficiency: ~30%
- Search sensitivity for p→vK+ reach
 ~10³⁴ years
- Also search for p→e+π⁰ mode with search sensitivity ~10³⁴ years

Hyper-K: water Cherenkov

- Overburden: ~600m
- 260 kton water Cherenkov detector
 - Fiducial mass: ~190 kton
 - Number of protons: ~10³⁵ (10³⁴ free protons)
- ~20,000 new φ50cm PMTs (20% photocoverage)
- New φ50cm PMTs improve nucleon decay discovery potential

 The cavern excavation completed this July and aim to start operation in 2028

Hyper-K: water Cherenkov

arXiv:1805.04163

- New φ50cm PMTs for Hyper-K have twice better photo-detection efficiency than SK PMTs
- Proton decay background rejection (neutron-tagging) efficiency largely improved:
 - p→e+π⁰ expected bkg events 0.06* for ~10 years
 - "Background free" p-decay search
 - ~9σ discovery potential if proton lifetime at the current SK limit (τ_p/Br=1.7x10³⁴yrs)
- 3σ discovery potential in 20 years:
 - p→e+π⁰: 10³⁵ years
 - p→vK+: 10³⁴ years

Summary

- Many active searches in many modes, especially the benchmark modes p→e+π⁰, p→v̄K+
- No observation yet...
- Future searches with next-generation large detectors aim to improve the sensitivity by order of magnitude
- Let's discover conclusive evidences of nucleon decays and open the door to exploring grand unification!

