# **Dark Matter Searches** with Water Cherenkov Experiments

**Volodymyr Takhistov** 

QUP & Theory Center, KEK & SOKENDAI & Kavli IPMU, U. Tokyo













#### What is the Universe Made of? What's Dark Matter (DM)?







- All evidence astronomical
- What is the origin? type and mass of particle(s)? interactions beyond gravity? ...
- → Myriad of possibilities: Delve Deep, Search Wide (Snowmass-2021)

#### Traditional DM Searches: "Make, Shake, Break"

#### **Production**





#### **Direct Detection**





#### **Indirect Detection**





#### Many New Tech Ideas, Example: Sub-eV Quantum Sensors @ Kamioka



- TES show excellent sensitivity for low-mass DM searches, sub-eV thresholds feasible
  - → probe new parameter space w/ quantum sensors, multiple upcoming QUP experiments

[Chen, Takhistov, Nakayama, Hattori, (2025) 2506.10070]

### Water Cherenkov (WC) Experiments as DM Discovery Machines



- Super-K/SK (~50 kt): >25 years of operation, leading neutrino physics and DM limits
- Hyper-K/HK (~260 kt): x8.4 SK fiducial mass, start 2028

#### → spectacular multipurpose experiments

- Advantages of WC detectors for DM searches:
  - Huge exposure compared to conventional direct DM detection, multi-megaton\*year feasible
  - Low possible detection thresholds to ~ O(few x MeV)
  - Directional capabilities
  - Broad coverage of signatures
    - → probe wide range of DM theories





# **Broad DM Program in WC Detectors: Selected Highlights**

| Dark Matter                                   | Dark Matter Mass                                 | (Super) Hyper-Kamiokande Signatures        |  |  |
|-----------------------------------------------|--------------------------------------------------|--------------------------------------------|--|--|
| PBH evaporation to $\nu$ (GC, halo)           | $M_{\mathrm{PBH}} \lesssim 10^{15} \mathrm{\ g}$ | $\nu$ scattering, diffuse $\nu$ background |  |  |
| Q-ball DM (catalysis)                         | $M_Q \gtrsim 10^{12} - 10^{16} \text{ GeV}$      | catalyzed nucleon decay                    |  |  |
| Baryon-charged DM (e.g. hylogenesis)          | $m_\chi \sim { m GeV-TeV}$                       | scattering-induced nucleon decay           |  |  |
| DM annihilation (GC)                          | $m_{\chi} \sim 10 \ \mathrm{MeV}$ –100 GeV       | u scattering                               |  |  |
| DM annihilation (Earth, Sun, Jupiter capture) | $m_\chi \sim 1 - 10^3 \; \mathrm{GeV}$           | u scattering                               |  |  |
| Cosmic-ray upscattered (boosted) DM           | $m_\chi \sim { m MeV	ext{-}GeV}$                 | u scattering                               |  |  |
| Millicharged DM (dark cosmic rays)            | $m_\chi \sim 110^3 \text{ GeV}$                  | ionization, $\nu$ -like e-scattering       |  |  |
| Dark stars (powered by DM annihilation)       | $m_\chi \sim 110^5 \; \mathrm{GeV}$              | energetic diffuse $\nu$ background         |  |  |

#### **Galactic Center DM Annihilation**

- For DM signals look where large DM concentration, prime is Galactic Center
- WIMP DM annihilation:  $\chi \chi \to v \overline{v}, W^+W^-, b \overline{b}, \mu^+\mu^- \to ... v_{e/u/\tau}$





HK will improve over SK by factor x(few) for variety of channels, excellent sub-GeV DM reach
 e.g. [Bell+, 2020; ...], [Hernandez, Ramos, Martinez-Soler, Takhistov, in prep]

### **DM Capture and Annihilation in Celestial Bodies**

 Halo DM can be captured by celestial bodies through interactions, observable signals then depend on capture—annihilation—evaporation dynamics (temperature, composition, grav.)



PhD Thesis, (2018)]

### **Boosted DM and Cosmic-Ray Upscattering**

- Cold DM ( $v \sim 10^{-3}$ ) can be "boosted" to relativistic energies, probe new distinct regimes
- Prominent examples include
  - Galactic Center decays of heavy DM → light boosted DM [Agashe+, 2014]
  - Cosmic-ray DM upscattering [Beacom+, 2019; Pospelov+, 2019; ...]





DM Interaction with protons

→ same interaction in detector

[Abe+ (SK), PRL, 2023]

Various possibilities, such as blazar-boosted DM (assume DM "spike") [Granelli+, 2022]

# Millicharge DM and Dark Cosmic Rays

- DM with small (milli)charge can be accelerated in cosmic accelerators like cosmic rays
- First proposal to re-use DSNB analysis range for DM searches, many follow ups

#### cosmic accelerator



"astrophysical" DM flux  $~\sim E^{-lpha}$ 



 $arepsilon \sim 1$  muon-like

 $\varepsilon \ll 1$  neutrino-like

[Hu, Kusenko, Takhistov, PLB, (2016)] (also later [Dunsky+, 2019; Li, Lin, 2019])

\*\*\* Can probe millicharges at SK/HK also from atmospheric collisions [Plestid, Takhistov+, PRD, (2020)]

# Macroscopic DM: Q-balls Catalyzing Nucleon Decay

- Q-ball solitons can form naturally from scalar field instabilities in e.g. supersymmetric models
- If Q-balls carry baryon number (B), can catalyze nucleon decay—like events in exp., SK/HK

mass-radius relation depends on theory (potential), for gauge-mediated SUSY

$$M_Q = \frac{4\pi\sqrt{2}}{3} M_S Q^{\frac{3}{4}}$$
$$R_Q = \frac{1}{\sqrt{2}} M_S^{-1} Q^{\frac{1}{4}}$$

$$R_Q = \frac{1}{\sqrt{2}} M_S^{-1} Q^{\frac{1}{4}}$$

Q-ball DM flux ~ 
$$\Phi_Q \sim rac{
ho_{
m DM}}{M_O} \, v$$



[Takenaga+ (SK), *PLB*, (2007)]

# **DM** with Baryon (B) Charge

- DM with (anti-)B charge can naturally link visible and dark sectors
- Hylogenesis: DM carries B, visible and dark baryon asymmetries generated together
- DM can interact in detector and induce nucleon decays, with distinct kinematics



| Decay mode  | $p_M^{\rm SND}~({ m MeV})$ | $p_M^{\mathrm{IND}} \; (\mathrm{MeV})$ |
|-------------|----------------------------|----------------------------------------|
| $N 	o \pi$  | 460                        | 800 - 1400                             |
| $N \to K$   | 340                        | 680 - 1360                             |
| $N 	o \eta$ | 310                        | 650 - 1340                             |

[Davoudiasl+, PRL, 2010]

 Various other related proposals, e.g. mesogenesis: DM coupled to mesons and baryon asymmetry arises via baryon—meson—DM interactions [Berger, Ely, PRL, 2024]

#### **New Broad Program of Non-Canonical Nucleon Decays**

#### Test light new physics: axions, dark photons, sterile v's, scalar DM ...

| 0                             | Operator                                                                                                                      | $(\Delta B, \Delta L)$ | Dim | Decay modes                                                           | New Field(s)                                |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|-----------------------------------------------------------------------|---------------------------------------------|
| $\mathcal{O}_{d^2uN}$         | $\epsilon^{abc} \left( d_a N \right) \left( d_b u_c \right)$                                                                  | (1, 1)                 | 6   | $p(n) \rightarrow \pi^{+(0)} N$                                       | sterile neutrinos                           |
| $\mathcal{O}_{Dd^2uar{N}}$    | $\epsilon^{abc} \left( d_a \sigma_\mu N^\dagger \right) \left( d_b D^\mu u_c \right)$                                         | (1, -1)                | 7   | $n \to N\gamma$ $p(n) \to \pi^{+(0)}N\gamma$                          | sterile neutrinos                           |
| $\mathcal{O}_{du^2e\phi}$     | $\epsilon^{abc} \left( d_a u_b \right) \left( e u_c \right) \phi^{\dagger}$                                                   | (1, 1)                 | 7   | $p \to e^+ \phi$ $p(n) \to e^+ \pi^{0(-)} \phi$                       | dark scalars, majorons                      |
| $\mathcal{O}_{d^2Qar{L}X}$    | $\epsilon^{abc} \left( Q_a^i \sigma^\mu d_b \right) \left( d_c L_i^\dagger \right) X_\mu$                                     | (1, 1)                 | 7   | $n \to \nu X$ $p(n) \to \nu \pi^{+(0)} X$ $n \to e^+ \pi^- X$         | dark photons                                |
| ${\cal O}_{dQ^2ar Lar H\phi}$ | $\epsilon^{abc} \left( Q_a^i Q_b^j \right) \left( L^_i d_c \right) H_j^\dagger \phi^\dagger$                                  | (1,1)                  | 8   | $n \to \nu \phi \\ n \to e^+ \pi^- \phi$                              | dark scalars, majorons                      |
| ${\cal O}_{Dd^2Qar{L}a}$      | $\epsilon^{abc}(\partial^{\mu}a)\left(Q_{a}^{i}\sigma^{\mu}d_{b}\right)\left(d_{c}L_{i}^{\dagger}\right)$                     | (1, 1)                 | 8   | $n \to \nu a$ $p(n) \to e^+ \pi^{0(-)} a$ $p(n) \to e^+ \pi^{0(-)} a$ | axion-like particles                        |
| $\mathcal{O}_{Dd^2uar{N}a}$   | $\epsilon^{abc}(\partial^{\mu}a)\left(d_{a}\sigma_{\mu}N^{\dagger}\right)\left(d_{b}u_{c}\right)$                             | (1, -1)                | 8   | $n \to Na$ $p(n) \to \pi^{+(0)} Na$                                   | axion-like particles with sterile neutrinos |
| ${\cal O}_{duQear Lar N}$     | $\epsilon^{abc}\left(eu_{a}\right)\left(Q_{b}^{i}\sigma_{\mu}d_{c}\right)\left(N^{\dagger}\sigma^{\mu}L_{i}^{\dagger}\right)$ | (1, 1)                 | 9   | $p \to e^+ \nu N$ $n \to e^+ e^- N$                                   | sterile neutrinos                           |
| $\mathcal{O}_{du^2eN^2}$      | $\epsilon^{abc} \left( d_a u_b \right) \left( e u_c \right) \left( N N \right)$                                               | (1,3)                  | 9   | $p 	o e^+ NN$                                                         | sterile neutrino                            |

- Multi-nucleon decays possible
- Mixed scenarios possible
   (e.g. axion + sterile N, v + dark photon
   → new minimal invisible mode)
- New tests of light new physics over decades in mass below ~ few GeV

[Fridell, Hati, Takhistov, PRD Lett. (2023), 2312.13740]

Many novel possibilities mediated by motivated BSM particles

<sup>\*</sup> don't require external interactions like "induced" nucleon decays

#### **Unusual Kinematic Signatures, Many Opportunities**



going beyond searches with just Standard Model final states

In SK thus far only:  $p \rightarrow e(\mu)X$ 

[Takhistov+ (SK), PRL, (2015); + ongoing analysis]

Example:  $m_N = 400 \text{ MeV}$  and dark scalar mass  $m_{\phi} = 700 \text{ MeV}$ .

#### → conventional searches can misinterpret or even completely miss

[Fridell, Hati, Takhistov, PRD Lett. (2023), 2312.13740]

# **Evaporation of Primordial Black Hole (PBH) DM**

- Black holes could have formed in early Universe and can contribute to DM
- PBHs ≤ 10<sup>15</sup> g are efficiently undergoing Hawking evaporation today
- Neutrinos produced via primary, secondary emission
  - → diffuse background and point-sources

 $T_{
m PBH} \sim 1/M_{
m PBH}$ 







[Bernal+, 2022]

\*\*\* Complementary to other PBH tests, e.g. interstellar gas heating [Laha, Lu, Takhistov, PLB, 2021; Kim, 2020]

# **DM-powered Earliest (Dark) Stars**

- Earliest stars could be "dark stars" fueled by DM annihilation heating instead of nuclear fusion [Spoylar, Freese, Gondolo, PRL (2008)]
- Dark stars can be significantly bigger (  $\sim 10^6 M_{\odot}$ ) than Population III stars
- Upon collapse → early massive seeds for galactic supermassive black holes
- Possible candidates seen in JWST, redshifts z ~ 11-14 ? [Ilie, Paulin, Freese, PNAS (2023)]



[Schwemberger, Takhistov, ApJ. Lett. (2025), 2412.18654]

\* consistent with JWST

Volodymyr Takhistov (QUP, KEK)

# Summary

- WC SK and HK are truly discovery machines: multipurpose detectors, unique DM sensitivity
- SK already set world-leading limits across diverse DM scenarios
- HK, with larger fiducial mass, low thresholds, etc. will broadly open new DM parameter space
- → annihilation sub-GeV DM, boosted DM, novel DM B-violation channels, PBH evaporation, diffuse signals from dark stars + much more....
- WC detectors provide a complementary and indispensable probe of DM synergistic with conventional direct detection, colliders, astrophysical and emerging quantum-sensor approaches
- The coming decade can be transformative for DM searches with WC experiments

