

Reconstruction in Super & Hyper-K

Benjamin Quilain (ILANCE, CNRS-IN2P3/The University of Tokyo)

International Laboratory for Astrophysics, Neutrino and Cosmology Experiments

EU Workshop on Water Cherenkov Experiments for Precision Physics, Krakow, 2025/09/18

I. Physics & reconstruction goals

Physics case

Proton decay

Probe Grand Unified
Theories through p-decay
(world best sensitivity)

• MSW effect in the Sun

Supernovae neutrinos

• Non-standard interactions in the Sun.

Hit PMT Charge & Time

- Observe CP violation for leptons at 5σ
- Precise measurement of δ_{CP} .

High sensitivity to $\boldsymbol{\nu}$ mass ordering.

• Relic SNv: Constrains cosmic star formation history

Physics case Solar neutrinos 10 MeV event Charge [p.e.] • MSW effect in the Sun Non-standard interactions in the Sun. Supernovae neutrinos Reconstruct an event with <u>Direct SNv</u>: Constrains SN models very sparse information Relic SNv: Constrains cosmic star formation history

Physics case

Probe Grand Unified
Theories through p-decay
(world best sensitivity)

20 000 m

10 000 m

• Precise measurement of δ_{CP} .

Atmosp/

• High sensitivity to ν mass ordering.

Times (ns)

Data μ-like

OD Times (ns)

D wall: 1136.5 cm

Infer from a large amount of correlated information

JPARC accelerator neutrinos

Principles of reconstruction

Hit PMT Charge & Time $\{q_i, t_i, x_i, y_i, z_i\}$

Reconstruction Inference

Variables of interest for ν physics

What are they?

Neutrino oscillates in L/E :

Example of T2K

Need to reconstruct the:

- Detected flavour : v_e/v_u .
- Neutrino energy.
- Baseline L : Fixed for T2K...
 - \rightarrow But variable for solar or atmospheric ν . How to do ?

Principles of reconstruction

Hit PMT Charge & Time $\{q_i, t_i, x_i, y_i, z_i\}$

Reconstruction Inference

Variables of interest for ν physics

What are they?

• Neutrino oscillates in L/E:

Example of atmospherics

Need to reconstruct the:

- Detected flavour : v_e/v_μ .
- Neutrino energy.
- Baseline L : Fixed for T2K...
 - \rightarrow But variable for solar or atmospheric ν . How to do ?
 - \rightarrow The ν direction (zenith angle θ) is a proxy for L.

Principles of reconstruction

Hit PMT Charge & Time $\{q_i, t_i, x_i, y_i, z_i\}$

Reconstruction Inference

Variables of interest for ν physics

What are they?

• Neutrino oscillates in L/E:

Low energy event vertex

Need to reconstruct the:

- Detected flavour : v_e/v_μ .
- Neutrino energy.
- Baseline L : Fixed for T2K...
 - \rightarrow But variable for solar or atmospheric ν . How to do ?
 - \rightarrow The ν direction (zenith angle θ) is a proxy for L.
- Interaction vertex (remove bkg etc.)

II. Solar ν and electron fitter

Low energy reconstruction

• How to identify solar neutrinos? ~10 events / day.

Rely on elastic scattering: reconstruct θ_{sun} to remove background.

- \rightarrow Very faint ring.
- \rightarrow e- crosses \leq 5-10 cm before passing \leq
- Cherenkov threshold. Sequential fitter
- → vertex resolution ~50cm
- ⇒ Light emitted from single point.

Vertex reconstruction

- This single point reconstruction is based on time triangulation ⇒ BONSAI

$$\rightarrow$$
 Uses time residual: $t_{res} = time - tof - t_{vertex}$.

• Vertex finding using the following likelihood:

$$L(Vtx|[hits]) = \prod_{i=0}^{nhits} P([t_{res}]|Vtx)$$

Time residual likelihood

 Likelihood is minimized to find the vertex.

Direction & momentum reconstruction

- Start from the fitted vertex.
- Rely on « charge profile » (θ_c) : distribution of vertex-to-hit PMT direction wrt e- direction.

 V_e V_e

→ Uses unbinned likelihood over all hit PMT :

$$L(\vec{d}) = \sum_{i}^{N_{30}} \log \left[f(\cos \theta_{\text{dir},i}, E) \right] \times \frac{\cos \theta_i}{a(\theta_i)}$$

 Momentum inferred from the total number of hits deposited in the detector & in-time wrt vertex.

Performances in SK and impact on upturn

Vertex resolution in SK: Reconstruction threshold @3 MeV

- <u>Up-turn determination</u>:
 - Solar parameter measurement.
 - Light sterile v ?
 - Non-standard interaction in the dense core of the Sun

Can we do equal or better in HK ?

Performances in HK

• BONSAI ported to HK \rightarrow At the moment, E threshold ~4.5 MeV/c²

- Limited sensitivity in upturn determination due to mis-tuning
 - \Rightarrow Ported BONSAI \rightarrow LEAF (C++) based on MINUIT minimizer
 - \rightarrow More flexible & improved : \downarrow E threshold to @3-3.5 MeV.
 - → Work-in progress to reach 2 MeV, using LEAF.
 - \rightarrow Real data will likely be even more tough \rightarrow Prepare for it.

• ML-based algorithm are also developed.

III. DSNB search and n-tagging

Diffuse Supernovae Neutrino Background

• Background from v emitted by all SN from the start of the universe.

- 1 SN/s in observable universe
 - → Constraint SN spectra.
 - \rightarrow But also, cosmic star history!

•s. <u>Spectrum determination</u>: Low energy ↔ Probe older stars

• SK-Gd, then JUNO & HK are the pioneer experiments of this domain!

Detection method & neutron tagging

• How to identify DSNB as we expect ~3 events/year in SK...?

- Uses the v_e IBD channel...
 - .. and rely on coincident detection of prompt positron and late neutrons.
 - \rightarrow Neutron capture on H or Gd.
- How to identify neutrons?

• Search neutrons in a 500 μs time window after the trigger [-5, 35 μs] :

positron	neutron	time
SHE trigger [40 µs]	AFT trigger [500 μs]
	10 ns tim	e - time of flight

	H-capture	Gd-capture
γ energy	2.2 MeV	8 MeV
Capture	205 μs	30 μs
time λ		

• How to eliminate remaining background after prompt+late detection?

DSNB reconstruction in SK

• 22 variables in total: Reconstruct neutron vertex using BONSAI/LEAF.

Distance between e+ & n vertex

Number of hits in ±10ns around n-vertex

Time spread of hits around e+ vertex

DSNB reconstruction in SK

How to eliminate remaining background after prompt+late detection ?

Boosted Decision Tree & Neural Network

World-leading results on DSNB search

DSNB search in HK

• Hyper-K, though having 8x larger volume, will have several limitations

- $1000 \text{ mwe} \rightarrow 650 \text{ mwe}.$
- Larger surface

⇒ 20x more
spallation

Need to urgently step up in :

- ↑ ↑ neutron detection efficiency on H.
- ↑ spallation model & identification cu²⁰

ML-based reconstruction

• Convolutional neural networks (WatChMaL) \rightarrow Not presented today.

- Graph neural networks [aka GNN] (CAVERNS-WatChMaL)
 - \rightarrow Rely on node & edges: Each hit PMT = a node of the GNN.

Basic principles of GNN

• Use hit PMT informations (position, hit charge&time) to construct a Graph i.e. a connected array of PMTs \rightarrow To reconstruct the ring or vertex.

- Hit coordinates
 - (x, y, z)Charge (Q)

 - Hit time (t)
- How to connect the PMTs?
 - 1. Based on their spatial proximity?
 - \rightarrow Clear image of a ring.
 - 2. Based on their « charge deposit » proximity ?
 - 3. Based on their hit time proximity?
 - → Great to reconstruct vertex through triangulation.
 - 4. All at once?

→ Answers depends on the task we wish to accomplish.

Basic principles of GNN

• Aggregation + Convolution applied to circulate the information along nodes & « simplify it » using convolution.

Node: Hit PMT 2

= a convolutional layer

• <u>To optimise</u>: number of connected nodes & layers should be optimized.

→ Problem dependent.

→ Optimized it through minimum gradient descent.

 Graph output is then aggregated in a 1D array.

Node: Hit PMT 3

(x, y, z) Charge (Q) Hit time (t)

Hit coordinates

Classification using GNN

• A multi-layer perceptron basically does the final classification task

 \rightarrow In our example, the neutron identification

- High background acceptance:
 GNN signficantly outperforms BDT (+20%).
- <u>Low background acceptance :</u> GNN performs same as BDT.
 - \rightarrow Starting and on-going effort.

24

IV. Long-baseline neutrino oscillation

Long-baseline experiment

- Need to reconstruct : detected flavour (v_e/v_μ) & E.
- <u>Particles cross several meters while emitting</u> <u>Cherenkov light:</u>
 - → Not point-like source & correlated parameters.
 - → Momentum can be reconstructed using total charge &/or ring-width

FiTQun high-energy algorithm

• Simulatenous fit of 8 parameters using all PMTs charge&time:

 $\{X\}_i = (vertex position, vertex time, momentum, direction, particle type)$

hit PMT

• Likelihood-based fitter:

• Excellent e/μ separation (mis-ID < 1%)

Multiple ring reconstruction

Let's assume that the real event is $e+\pi$

1. First ring fitted as e-like & π -like (π -like not shown here)

Let's assume that the real event is $e+\pi$

- 1. First ring fitted as e-like & π -like (π -like not shown here)
- 2. Let's focus on 1st ring e-like. 2nd ring fitted as e-like & π -like
- → Let's assume both hypotheses pass the cut (Likelihood improved)

Let's assume that the real event is $e+\pi$

- 1. First ring fitted as e-like & π -like (π -like not shown here, but same).
- 2. Let's focus on 1st ring e-like. 2nd ring fitted as e-like & π -like
- → Let's assume both hypotheses pass the cut (Likelihood improved)
- 3. 3rd ring is fitted as e-like & π -like
- \rightarrow Let's assume that no 3 ring hypothesis pass the cut.

 \rightarrow The fit is stopped here.

- 4. The Likelihood of the 2 leaves are compared
- \rightarrow The higher becomes the fit result.
- \rightarrow If everything works well, the winner should be Leaf #2.
- 5. Note that we have not shown the graph where 1st ring is π -like
- \Rightarrow More leaves in this case in reality \Rightarrow Very time consuming!

High-energy reconstruction in HK

• fiTQun is powerful and has been ported to HK... but is relatively slow

	1 ring e/μ	1 ring e/π0	Multi-ring atmospheric
CPU time / event	30s	50s	up to 600s

- <u>For HK</u>: aim to reach ≤ 1% stat. and syst. uncertainties
 - ⇒ Huge data processing & large MC generation to constrain our syst.
 - ⇒ Need a faster algorithm (and potentially more physics powerful).
- 3 efforts are on-going:
 - Improve fiTQun efficiency.
 - Port fiTQun to GPU: computation time ↓ by 12. officialization
 - Machine learning development : CNN, Visual transformers, GNN

Work in-progress before

Basic classifier : e/µ separation

• e/μ is THE SK most fundamental PID : remove v_{μ} from v_{e} sample.

• GNN : > 99% e-efficiency for 5% μ contamination \rightarrow As fiTQun

• Largely improved performances out of FV \rightarrow Enlarge FV & statistics !

Processing time

• e/μ is THE SK most fundamental PID : remove ν_{μ} from ν_{e} sample.

• Largely improved performances out of $FV \rightarrow Enlarge FV \& statistics !$

IV. Atmospheric neutrino oscillations

Atmospheric neutrinos

- Very broad spectrum ranging from few MeV to TeV.
- Mass ordering dominantly determined with upward-going multi-GeV \underline{v}_{ρ} sample : \rightarrow CC-resonant and DIS dominates \Rightarrow Multi-ring domain.

- A fast and reliable ring counting algorithm is the key for atmospheric neutrino
 - → Historical Super-K fitter : APFit

The APFit algorithm

• APFit is a sequential algorithm: Refine ring Vertex & direction → Ring counting → PID → Momentum counting • Ring counting much faster than fiTQun, based on Hough transform \rightarrow Goal is to find each particle direction. 42 deg. ring hit PMT (possible center) \rightarrow Start from the vertex. \rightarrow For each hit PMT, draw virtual cone of 42° around the PMT. hit PMT center Cherenkov ring (most probable) → Direction of the particle is region with higher density virtual cone.

PID is based on charge distribution only

Perspectives of improvement

- Provide mass-ordering determination : $\Delta \chi^2 = 5.7$
- Perspective for improvement:
 - Adapt fiTQun to atmospheric ν (now only $SK-IV) \rightarrow More performant in FV-size &PID.$
 - Develop a ring counting algorithm using ML.

(b) Semantic segmentation

Conclusions

- Super- and Hyper-K covers a large range of physics: MeV → TeV
 - → At low energy: reconstructed event from a sparse&noisy information.
 - → At high-energy: reconstructed very correlated information.
- <u>Significant challenges ahead of us, esp. for Hyper-K</u> (but useful and developed for Super-K)
 - → Low energy, especially for DSNB search, will be very challenging.
 - ⇒ Improve our n-tag algorithm performances.
 - \rightarrow At high-energy : \downarrow computational time while \uparrow physics performances.
 - → Very active development of existing algorithm to push them beyond their current performances.
- In parallel, there is an effort to develop and test ML-based algorithm
 - → Developed as a complementary approach to our existing algorithms.
 - → Can also learn from the pattern they find to feed

« traditional »reconstruction.

Additional slides

DSNB search with pre-selection cuts

