

Diffuse Supernova Neutrino Background at Water Cherenkov Detectors

II EU Workshop on Water Cherenkov Experiments for Precision Physics (WCD-2025)

September 19 2025

Rudolph Rogly - CNRS/École Polytechnique

Diffuse Supernova Neutrino Background

Core-Collapse Supernova (CCSN)

- Death of massive stars ($M \gtrsim 8 \, \mathrm{M}_{\odot}$), where ~99% of the energy (~10⁵⁹ MeV) is released via the emission of neutrinos and antineutrinos of all flavors (~10 MeV/ ν).
- Supernova neutrinos first detected in 1987 (Kamiokande II, IMB et Baksan), from SN1987A in the Large Magellanic Cloud.
- ... but transient events every once in a while in the galaxy: ~1-3/century.

❖ The <u>Diffuse Supernova Neutrino Background</u> is the integrated flux of supernova neutrinos originating from all CCSN events in the history of the universe → steady probe to study supernova neutrinos.

• DSNB flux is given by:

$$\Phi(E_{\nu}) = c \int_{z} \sum_{s} R_{SN}(z, s) \sum_{\nu_{\beta}, \bar{\nu}_{\beta}} F_{\beta}(E_{\nu}(1+z), s) \frac{\mathrm{d}z}{H(z)}$$

Redshift-dependent SN rate

Universe expansion

Star formation rate as a function of redshift¹

R. Rogly - WCD 2025 Workshop, September 17-19

• DSNB flux is given by:

SN neutrino emission spectrum

$$\Phi(E_{\nu}) = c \int_{z} \sum_{s} R_{SN}(z, s) \sum_{\nu_{\beta}, \bar{\nu}_{\beta}} F_{\beta}(E_{\nu}(1+z), s) \frac{\mathrm{d}z}{H(z)}$$

Redshift-dependent SN rate

Universe expansion

Example model of neutrino spectrum for successful & failed supernovae¹

Redshitft-dependent neutrino spectrum¹

DSNB flux is given by:

SN neutrino emission spectrum

$$\Phi(E_{\nu}) = c \int_{z} \sum_{s} R_{SN}(z, s) \sum_{\nu_{\beta}, \bar{\nu}_{\beta}} F_{\beta}(E_{\nu}(1+z), s) \frac{\mathrm{d}z}{H(z)}$$

Redshift-dependent SN rate

Universe expansion

Expected DSNB event rate for different values of Hubble constant²

• DSNB flux is given by:

Rich phenomenology, e.g.:

- Star formation rate,
- Black hole fraction,
- Neutrino oscillation in stars,
- Exotic neutrino properties e.g. neutrino decay,
- Supernova explosion mechanism,
- History of the universe.

SN neutrino emission spectrum

$$\Phi(E_{\nu}) = c \int_{z} \sum_{s} R_{SN}(z, s) \sum_{\nu_{\beta}, \bar{\nu}_{\beta}} F_{\beta}(E_{\nu}(1+z), s) \frac{dz}{H(z)}$$

Redshift-dependent SN rate

Universe expansion

Supernova neutrinos and the Kamiokande saga

Kamiokande (1983-1996)

First detection of supernova burst neutrinos (SN1987A)

Super-Kamiokande (1996-)

First hints/evidence of diffuse supernova neutrino background?

DSNB at Water Cherenkov Detectors

Hyper-Kamiokande (2028-)

First constraints on DSNB spectral shape?

Supernova neutrinos and the Kamiokande saga

Super-Kamiokande (1996-)Kamiokande Fiducial 22.5 kt (1983-1996)ducial i kt First detection of supernova burst neutrinos (SN1987A) First hints/evidence of

diffuse supernova neutrino background?

DSNB at Water Cherenkov Detectors

Hyper-Kamiokande (2028-)

First constraints on DSNB spectral shape?

DSNB events at SK

• SK sensitive to the electronic antineutrino part of the DSNB via the Inverse Beta Decay channel:

DSNB at Water Cherenkov Detectors

DSNB dual signature from IBD interaction

DSNB events at SK

• SK sensitive to the electronic antineutrino part of the DSNB via the Inverse Beta Decay channel:

Event display of a simulated 10 MeV positron (without dark noise hits)

Background events

- ightharpoonup Observables: e^+ rec. energy E_{e^+} , rec. Cherenkov angle θ_C and number of tagged neutrons n
- Reactor $\bar{\nu}_e$:
 - Irreducible and a dominant background below ~10 MeV.

DSNB event

- Spallation-induced:
 - From cosmic muons going through SK (~2 Hz): dominant background in the low energy end of the analysis window.

DSNB at Water Cherenkov Detectors

- Atmospheric ν Charged-Current (CC)
- Atmospheric *ν* Neutral-Current (NC)

Prompt positron selection

Set of cuts applied on **ancillary observables** to bring the S/B closer to 1:

Prompt positron selection

Set of cuts applied on **ancillary observables** to bring the S/B closer to 1:

- Spallation event reduction
 - → Muon track observables based cuts, neutron cloud cuts, box cuts.
 - \Rightarrow Retain > 60% signal, with O(1%) background acceptance.

Muon track observables

Spallation log-likelihood ratio

Spallation-induced β -decay isotopes, w. and w/o.

neutron production

Prompt positron selection

Set of cuts applied on **ancillary observables** to bring the S/B closer to 1:

- Atmospheric event reduction
 - The Cuts on observables encompassing the « fuzziness » of the Cherenkov ring for μ/π rejection, decay electron cut, and newly introduced single-cone likeness (aka MSG) cut to remove multi-cone events.
 - \rightarrow Retain > 90% signal, with O(1%) background acceptance.

A.D. Santos, PhD thesis

Delayed neutron selection

• Increasing Gd-loading since 2020 allows to enhance neutron tagging capability.

	SK-IV (pure water)	SK-VI (0.01% Gd)	SK-VII (0.03% Gd)
n-capture on Gd	0 %	50 %	75 %
Time constant	~210 µs	~115 µs	~65 µs

Delayed neutron selection

- 2 ML-based approaches developed to leverage full capability of SK-Gd detector, with mistag rate $\sim O(0.01\%)$.
 - *Boosted Decision Tree*, with 22 variables as inputs encompassing delayed signal photo-statistics, space-time clustering, characteristic reconstructed distances.
 - → *Neural Network*, with 12 variables as inputs encoding the hit pattern and the energy.

Neutron	tagging	ROC	curve	(SK-VII)

	SK-IV (pure water)	SK-VI (0.01% Gd)	SK-VII (0.03% Gd)
n-capture on Gd	0 %	50 %	75 %
Time constant	~210 µs	~115 µs	~65 µs
n-detection efficiency	~25%	~40%	~60%

Overall selection

Set of cuts applied on **ancillary observables** to bring the S/B closer to 1:

- Spallation event reduction
 - → Muon track based cuts, neutron cloud cuts, box cuts.
 - \rightarrow Retain > 60% signal, with O(1%) background acceptance.
- Atmospheric event reduction
 - → Cuts on observables encompassing the « fuzziness » of the Cherenkov ring for μ/π rejection, decay electron cut, and newly introduced single-cone likeness (aka MSG) cut to remove multi-cone events.
 - ightharpoonup Retain > 90% signal, with O(1%) background acceptance.
- Neutron tagging

Principle

• Shape-driven analysis: Fit DSNB + 5 background contents to the data,

via Extended Likelihood Maximization framework.

- Define 3 Cherenkov angle (θ_C) regions:
 - \rightarrow Low θ_C : Mostly μ/π events,
 - \rightarrow *High* θ_C : Mostly **NC** multi-cone events,
 - \rightarrow *Medium* θ_C : **Signal** & **backgrounds** (spallation, decay electrons, NCQE multi-cone events, atmospheric ν_e).

13

Principle

• Shape-driven analysis: Fit DSNB + 5 background contents to the data,

via Extended Likelihood Maximization framework.

- Define 3 Cherenkov angle (θ_C) regions:
 - \rightarrow Low θ_C : Mostly μ/π events,
 - \rightarrow *High* θ_C : Mostly **NC** multi-cone events,
 - → *Medium* θ_C : **Signal** & **backgrounds** (spallation, decay electrons, NCQE multi-cone events, atmospheric ν_e).
- Define 2 $N_{\text{tagged }n}$ -dependent region:
 - → Non IBD-like events ($N_{\text{tagged }n} \neq 1$)
 - → IBD-like events ($N_{\text{tagged }n} = 1$)

DSNB at Water Cherenkov Detectors

Principle

Shape-driven analysis: Fit DSNB + 5 background contents to the data,

via Extended Likelihood Maximization framework.

- Define 3 Cherenkov angle (θ_C) regions:
 - \rightarrow Low θ_C : Mostly μ/π events,
 - \rightarrow *High* θ_C : Mostly **NC** multi-cone events,
 - \rightarrow *Medium* θ_C : **Signal** & **backgrounds** (spallation, decay electrons, NCQE multi-cone events, atmospheric ν_{ρ}).
- Define 2 $N_{\text{tagged }n}$ -dependent region:
 - → Non IBD-like events ($N_{\text{tagged }n} \neq 1$)
 - → **IBD-like** events ($N_{\text{tagged }n} = 1$)

Golden region (best S:B ratio)

Principle

• Shape-driven analysis: Fit DSNB + 5 background contents to the data,

via Extended Likelihood Maximization framework.

- Define 3 Cherenkov angle (θ_C) regions:
 - \rightarrow *Low* θ_C : Mostly μ/π events,
 - \rightarrow *High* θ_C : Mostly **NC** multi-cone events,
 - → *Medium* θ_C : **Signal** & **backgrounds** (spallation, decay electrons, NCQE multi-cone events, atmospheric ν_e).
- Define $2 N_{\text{tagged } n}$ -dependent region:
 - → Non IBD-like events ($N_{\text{tagged }n} \neq 1$)
 - → **IBD-like** events ($N_{\text{tagged }n} = 1$)

Gd-loading enrich the golden region in DSNB signal.

Likelihood ratio test

Combined Results

DSNB (Horiuchi+09)

Best fit rate

2.9 events · year⁻¹

Best fit flux

 $1.4 \, \text{cm}^{-2} \cdot \text{s}^{-1} > 17.3 \, \text{MeV}$

Combined (stat. + sys.) $\approx 2.3 \sigma$ excess

Principle

- No input DSNB model in this analysis.
- Predicted background fluxes, instead of inferring them from fit.
- In the golden region, look at the excess per bin observed wrt. background-only prediction.
- CLs approach to derive bin-by-bin upper limits.

DSNB at Water Cherenkov Detectors

Upper Limits

- Poor sensitivity in the very low energy region (not probed by spectral analysis), mostly due to overwhelming spallation-induced background.
- ... yet SK-Gd (VI-VII) limits in those bins already better than SK-pure water (IV) despite ~3 less stats → courtesy of enhanced mitigation of spallation-induced accidental events owing to *decreased* neutron mistag rate thanks to Gd-loading.

Upper Limits

- Poor sensitivity in the very low energy region (not probed by spectral analysis), mostly due to overwhelming spallation-induced background.
- ... yet SK-Gd (VI-VII) limits in those bins already better than SK-pure water (IV) despite ~3 less stats
 → courtesy of enhanced mitigation of spallation-induced accidental events owing to decreased neutron mistag rate thanks to Gd-loading.
- In the intermediate energy region (common with spectral analysis), upper limits approach the range of DSNB predictions.

Paper soon-to-be released for the analysis of SK-Gd data.

Projected sensitivity

- **Prospective work** by A.D. Santos [PhD thesis]: used information from HK and JUNO design reports to estimate sensitivities.
- As expected, **JUNO** highly competitive at low energy due to enhanced neutron tagging owing to LS light yield.
- At high energy, Water Cherenkov detectors (SK-Gd and HK) bring similar or even better constraints.

Conclusion

- DSNB is an exciting probe to study supernovae and neutrino properties.
- The Gd-era of the SK experiment went successful in improving the sensitivity to the DSNB signal.
 - \Rightarrow Rejection of the background-only hypothesis at the 2.3 σ level across all SK phases.
 - \Rightarrow Stringent upper limits, for neutrino energy > 17.3 MeV approaching the range of predictions.
- Looking forward to approaching evidence for DSNB in the upcoming years with SK-Gd, HK and JUNO!

Backup

DSNB signal efficiency

SK-VI

SK-VII

BDT features importance

SK-IV

SK-VI

Fitted spectra

SK-VI

Analysis - DSNB Model-dependent spectral fit

Background-only hypothesis rejection

